Multilinear Marcinkiewicz-Zygmund inequalities
Martín Diego Mazzitelli
Universidad Nacional del Comahue \& COINCET

Given $1 \leq p, q, r \leq \infty$, the triple (p, q, r) is said to satisfy a Marcinkiewicz-Zygmund
inequality if there is a constant $C \geq 1$ such that for each continuous linear operator $T: L^{q}(\mu) \rightarrow L^{p}(v)$, each $n \in \mathbb{N}$ and functions $f_{1}, \ldots, f_{n} \in L^{q}(\mu)$,

$$
\begin{equation*}
\left\|\left(\sum_{k=1}^{n}\left|T\left(f_{k}\right)\right|^{r}\right)^{1 / r}\right\|_{L^{p}(v)} \leq C\|T\|\left\|\left(\sum_{k=1}^{n}\left|f_{k}\right|^{r}\right)^{1 / r}\right\|_{L^{q}(\mu)} \tag{1}
\end{equation*}
$$

Particular cases of (1) include well-known inequalities of Marcinkiewicz, Zygmund, Paley, Grothendieck and Herz among others. A systematic study of these vector-valued inequalities was addressed by Defant-Junge and Gasch-Maligranda, who determined the set of triples (p, q, r) and, in almost all the cases, the best constants $C \geq 1$ satisfying (1). The aim of this talk is to discuss the extension of these classical inequalities to the multilinear setting. As an application, we will obtain vector-valued estimates for multilinear singular integrals. We will also study the connection between MarcinkiewiczZygmund inequalities and weighted inequalities.

