The sup-norm vs. the norm of the coefficients

Martín Ignacio Mansilla Universidad de Buenos Aires \& CONICET
Let $A_{p, r}^{m}(n)$ be the best constant such that the following inequality holds: for every m homogeneous polynomial $P(z)=\sum_{|\alpha|=m} a_{\alpha} z^{\alpha}$ in n complex variables,

$$
\left(\sum_{|\alpha|=m}\left|a_{\alpha}\right|^{r}\right)^{1 / r} \leq A_{p, r}^{m}(n) \sup _{z \in B_{\ell_{p}^{n}}}|P(z)| .
$$

In this talk we show the ideas behind the study of the asymptotic behavior of these constants when n goes to infinity. We also relate these estimates with the asymptotic behavior of the mixed unconditional constant $\chi_{p, q}(m, n)$ i.e., the least $\lambda>0$ such that for every m - homogeneous polynomial P in n complex variables written as above it holds

$$
\sup _{z \in B_{\ell_{q}^{n}}} \sum_{|\alpha|=m}\left|a_{\alpha} z^{\alpha}\right| \leq \lambda\left|\sup _{z \in B_{p}^{n}} \sum_{|\alpha|=m} a_{\alpha} z^{\alpha}\right| .
$$

If time allows, we will treat the relation between $\chi_{p, q}(m, n)$ and the so-called mixed Bohr radii for holomorphic functions and exhibit some partial results on its asymptotic growth.
Joint work with Daniel Galicer and Santiago Muro.

