Spectra of some algebras of entire functions of bounded type, generated by the sequence of polynomials on a Banach space Svitlana Halushchak Vasyl Stefanyk Precarpathian National University

Let *X* be a complex Banach space. Let $\mathbb{P} = \{P_1, \dots, P_n, \dots\}$ be the sequence of polynomials such that P_n is an *n*-homogeneous continuous complex-valued polynomial on *X* for every positive integer *n* and the elements of \mathbb{P} are algebraically independent. Let us denote $H_{\mathbb{P}}(X)$ the closed subalgebra, generated by the elements of \mathbb{P} , of the the Fréchet algebra $H_b(X)$ of all entire functions of bounded type on *X*. Note that every $f \in H_{\mathbb{P}}(X)$ can be uniquely represented in the form

$$f(x) = f(0) + \sum_{n=1}^{\infty} \sum_{k_1+2k_2+\ldots+nk_n=n} a_{k_1\ldots k_n} P_1^{k_1}(x) \cdots P_n^{k_n}(x).$$

Consequently, every continuous homomorphism $\varphi : H_{\mathbb{P}}(X) \to \mathbb{C}$ is uniquely determined by its values on the elements of \mathbb{P} . Therefore, the spectrum of $H_{\mathbb{P}}(X)$ can be identified with some set of sequences of complex numbers. In this work we describe spectra of some algebras $H_{\mathbb{P}}(X)$.