Coordinatewise summability, inclusion theorems and p-Sidon sets

Let $m \geq 1, X_{1}, \ldots, X_{m}, Y$ Banach spaces and $T: X_{1} \times \cdots \times X_{m} \rightarrow Y m$-linear. For $r \geq 1$ and $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right) \in[1,+\infty)^{m}$, we say that T is multiple (r, \mathbf{p})-summing if there exists a constant $C>0$ such that for all sequences $x(j) \subset X_{j}^{\mathbb{N}}, 1 \leq j \leq m$,

$$
\left(\sum_{i \in \mathbb{N}^{m}}\left\|T\left(x_{\mathbf{i}}\right)\right\|^{r}\right)^{\frac{1}{r}} \leq C w_{p_{1}}(x(1)) \cdots w_{p_{m}}(x(m))
$$

In this talk, we discuss the multiple summability of T when we have information on the summability of the maps it induces on each coordinate, extending important results of Defant, Popa and Schwarting for ($r, 1$)-multiple summability. Our methods have applications to inclusion theorems for multiple summing multilinear mappings and to the product of p-Sidon sets.

