A characterization of the Bishop-Phelps-Bollobás property for operators for the pair (ℓ_{∞}^4, Y) Maria D Acosta University of Granada

Bishop-Phelps Theorem states that the set of norm attaining functionals is dense in the (topological) dual of a Banach space. Bollobás showed a "quantitative" version of that result called nowadays the Bishop-Phelps-Bollobás Theorem. He proved that every pair of elements (x_0, x_0^*) in $S_X \times S_{X^*}$ such that $x_0^*(x_0) \sim 1$ can be approximated by another pair (x, x^*) in $S_X \times S_{X^*}$ such that $x^*(x) = 1$. In 2008 it was initiated the study of versions of such result for operators. A pair of Banach spaces (X, Y) has the Bishop-Phelps-Bollobás property for operators (BPBp for short) whenever every pair (x_0, S_0) in $S_X \times S_{L(X,Y)}$ such that $||S_0(x_0)|| \sim 1$ can be approximated by another pair (x, T) in $S_X \times S_{L(X,Y)}$ such that ||T(x)|| = 1. Here we denote by L(X, Y) the space of bounded and linear operators from X to Y. It is known that the previous property is non trivial. It is an open problem whether or not the pair (c_0, ℓ_1) has the BPBp in the real case. It is known that the pair $(\ell_{\infty}^3, \ell_1)$ has that property. Here we provide a characterization of the Banach spaces Y such that (ℓ_{∞}^4, Y) has the BPBp. As a consequence, we provide examples of spaces Y satisfying the previous condition.

The results are part of a joint work with J.L. Dávila and M. Soleimani-Mourchehkhorti.