Computed tomographic anatomy of the temporomandibular joint in the young horse

M. J. RODRÍGUEZ*, R. LATORRE†, O. LÓPEZ-ALBORS†, M. SOLER, C. AGUIRRE, J. M. VÁZQUEZ†, M. QUEROL‡ and A. AGUT

Department of Medicine and Surgery, Veterinary School, University of Murcia, 30100 Espinardo, Murcia, Spain; ‡Department of Anatomy, Veterinary School, University of Murcia, 30100 Espinardo, Murcia, Spain; †Department of Anatomy, Resonancia de Murcia, Medicina y Gestión Sanitaria, S.L., Murcia, Spain.

Keywords: horse; temporomandibular joint; computed tomography; anatomy; cross-sectional imaging

Summary

Reasons for performing study: The equine temporomandibular joint (TMJ) and its surrounding structures can be difficult to investigate in cases with a clinical problem related to the region. Little previous attention has been given either to a computed tomographic (CT) imaging protocol for the joint or an interpretation of the structures displayed in CT images of the normal joint.

Objectives: To provide a CT atlas of the normal cross-sectional anatomy of the equine TMJ using frozen and plastinated sections as anatomical reference.

Methods: Eight TMJs from 4 immature pure-bred Spanish horses were examined by helical CT. Scans were processed with a detailed algorithm to enhance bony and soft tissue. Transverse CT images were reformatted into sagittal and dorsal planes. Transverse, sagittal and dorsal cryosections were then obtained, photographed and plastinated. Relevant anatomic structures were identified in the CT images and corresponding anatomical sections.

Results: In the CT images, a bone window provided excellent bone detail, however, the soft tissue components of the TMJ were not as well visualised using a soft tissue window. The articular cartilage was observed as a hyperattenuating stripe over the low attenuated subchondral bone and good delineation was obtained between cortex and medulla. The tympanic and petrous part of the temporal bone (middle and inner ear) and the temporohyoid joint were seen in close proximity to the TMJ.

Conclusions: Helical CT provided excellent images of the TMJ bone components to characterise the CT anatomy of the normal joint.

Potential relevance: Detailed information is provided that may be used as a reference by equine veterinarians for the CT investigation of the equine TMJ and serve to assist them in the diagnosis of disorders of the TMJ and related structures (middle and inner ear). The study was performed at an immature stage and further studies of mature individuals are required in order to confirm that the clinical interpretation is not affected by changes occurring with age.

Introduction

The equine temporomandibular joint (TMJ) and its surrounding structures form a complex anatomical region that can be difficult to investigate in cases presented with a clinical problem related to the site (Ramzan 2006; Rodríguez et al. 2007). Previous reports have described the anatomy (May et al. 2001; Weller et al. 2002; Rodríguez et al. 2006) and biomechanical functions (Bonin et al. 2006, 2007) of the joint. The equine TMJ is a synovial condylar articulation between the temporal bone and the mandible; its main articular components are the 2 noncommunicating synovial pouches (dorsal and ventral synovial pouches), the articular disc, lateral and caudal ligaments, and joint capsule (Nickel et al. 1986; Weller et al. 2002). Other key related structures are the TMJ masticatory muscles (temporalis, masseter, lateral and medial pterygoid; Rodríguez et al. 2006), vascular (superficial temporal artery and vein, pterygoid venus plexus, and transverse facial vessels: Barone 1980) and neural structures (facial nerve, mandibular and masseteric: Barone 1980) and the middle ear (Rodríguez et al. 2006).

Reports of TMJ diseases are sparse in horses, possibly due to these disorders being undiagnosed since this relies on heteroanalgesia, and clinical signs that can be confused with neurological or behavioural problems, including headshaking, quidding, masticatory problems or dysphagia (Warmerdam et al. 1997; Devine et al. 2005; Nagy and Simhofer 2006). The principal published disorders of the equine TMJ have been fractures (Devine et al. 2005), luxations (Hurtig et al. 1984; Hardy and Shiroma 1991), and septic and nonseptic arthritis (Carmalt and Wilson 2005; Nagy and Simhofer 2006). Radiography (Townsend and Cotton 2007), scintigraphy (Weller et al. 1999a), computed tomography (Rosenstein et al. 2001; Devine et al. 2005; Nagy and Simhofer 2006) and ultrasonography (Weller et al. 1999b; Rodríguez et al. 2007) are valuable imaging methods with which to evaluate the equine TMJ thoroughly.

Conventional radiography has been the standard procedure to image the TMJ in the horse, but the superimposition of the adjacent osseous structures, difficulties in positioning for multiple views and the complex anatomy of the equine head often impairs interpretation of radiographic views (Weller et al. 1999b). Novel imaging methods (computerised tomography [CT] and magnetic resonance imaging [MRI]) may be used as a reference by equine veterinarians for the CT investigation of the equine TMJ and serve to assist them in the diagnosis of disorders of the TMJ and related structures (middle and inner ear). The study was performed at an immature stage and further studies of mature individuals are required in order to confirm that the clinical interpretation is not affected by changes occurring with age.
Computed tomographic anatomy of the equine temporomandibular joint

Materials and methods

Animals

CT images were obtained of 8 TMJs from 4 immature pure-bred Spanish horses (age 1–3 years; 238–427 kg bodyweight), subjected to euthanasia for reasons not related to a TMJ disorder. Horses with dental disorders, masticatory muscle diseases and other related mouth pathology were excluded because of the potential damage over the TMJ. Each head was separated from the body at the atlanto-occipital level to enable their evaluation in an upright position, and the TMJs were examined ultrasonographically to rule out the presence of joint effusion or bony irregularity that could indicate a TMJ abnormality. Ultrasonography was performed with an ultrasonographic unit and an 11 MHz linear-array transducer. Anatomical study

Results

Computed tomographic study

The CT evaluation of the heads was performed within 2 h of euthanasia to avoid post mortem changes. The heads were placed in an upright position with the image plane perpendicular to the dorsal plane of the head. A helical CT scanner (CT HiSpeed CT/e Dual) was employed (120 kV and 130 mA; pitch = 1; collimation = 2 mm; gantry rotation = 1.5 s). Contiguous 1 mm transverse slices were acquired starting at the most rostral aspect of the zygomatic process of the temporal bone and continuing caudally up to the atlanto-occipital level to enable their evaluation in an upright position. Relationships were identified between the TMJ and masticatory muscles. Each of these soft tissues showed variable shades of grey and the synovial fluid was the lowest attenuating structure. It was not possible to identify the TMJ ligaments in CT images (Fig 3B), unlike in anatomical sections (Fig 3C). Blood vessels, such as the buccal vein, maxillary artery, transverse facial vessels, pterygoid venous plexus and caudal deep temporal vein were seen containing air (black colour), similar to the guttural pouches in bone and soft tissue CT images (Figs 1B, 2B and 3B).

Clipped and cleaned heads were injected with red, blue and green latex, respectively, using a peristaltic pump (Rodríguez et al. 2006). Each head was frozen at -30°C for 48 h and then sectioned with a high-speed band saw in blocks containing only the TMJ. These blocks were frozen at -70°C for one week to obtain contiguous 3 mm-thick transverse, sagittal and coronal sections that were photographed and plastinated (Latorre et al. 2003).

The CT images and corresponding anatomical sections were correlated, and an internationally accepted nomenclature used for labelling all structures (Anon 1994).

Materials and methods

Animals

CT images were obtained of 8 TMJs from 4 immature pure-bred Spanish horses (age 1–3 years; 238–427 kg bodyweight), subjected to euthanasia for reasons not related to a TMJ disorder. Horses with dental disorders, masticatory muscle diseases and other related mouth pathology were excluded because of the potential damage over the TMJ. Each head was separated from the body at the atlanto-occipital level to enable their evaluation in an upright position, and the TMJs were examined ultrasonographically to rule out the presence of joint effusion or bony irregularity that could indicate a TMJ abnormality. Ultrasonography was performed with an ultrasonographic unit and an 11 MHz linear-array transducer. The protocol described by Weller et al. (1999a) and Rodríguez et al. (2007) was followed in this study.

Anatomical study

Following the scanning procedure, arteries, veins and synovial structures of the clipped and cleaned heads were injected with red, blue and green latex, respectively, using a peristaltic pump (Rodríguez et al. 2006). Each head was frozen at -30°C for 48 h and then sectioned with a high-speed band saw in blocks containing only the TMJ. These blocks were frozen at -70°C for one week to obtain contiguous 3 mm-thick transverse, sagittal and coronal sections that were photographed and plastinated (Latorre et al. 2003).

The CT images and corresponding anatomical sections were correlated, and an internationally accepted nomenclature used for labelling all structures (Anon 1994).

Results

Computed tomographic study

The CT evaluation of the heads was performed within 2 h of euthanasia to avoid post mortem changes. The heads were placed in an upright position with the image plane perpendicular to the dorsal plane of the head. A helical CT scanner (CT HiSpeed CT/e Dual) was employed (120 kV and 130 mA; pitch = 1; collimation = 2 mm; gantry rotation = 1.5 s). Contiguous 1 mm transverse slices were acquired starting at the most rostral aspect of the zygomatic process of the temporal bone and continuing caudally up to the atlanto-occipital level to enable their evaluation in an upright position. Relationships were identified between the TMJ and masticatory muscles. Each of these soft tissues showed variable shades of grey and the synovial fluid was the lowest attenuating structure. It was not possible to identify the TMJ ligaments in CT images (Fig 3B), unlike in anatomical sections (Fig 3C).

The use of the bone window and detailed algorithm produced excellent images with high bone detail, so that clear differentiations could be made between the cortex (continuous flat high attenuating line) and medulla (homogeneous low attenuating structure); the trabecular pattern of the medullary bone was also well depicted. The articular cartilage was identified as a regular, smooth, high attenuating line over the homogeneous low attenuating subchondral bone (Figs 1B, 2B and 3B).

On transverse CT (Fig 1B) and anatomical sections (Fig 1C), the articular surfaces (articular cartilage and subchondral bone), articular space and lateromedial axis of the joint were assessed. Relationships were identified between the TMJ and the adjacent medial structures (i.e. the petrous and tympanic parts of the temporal bone, internal carotid artery, temporal venous sinus, pterygoid venous plexus and caudal deep temporal vein). The parotid salivary gland, maxillary vein, transverse facial vessels and facial nerve were in close proximity to the lateral aspect of the TMJ. However, the transverse anatomical sections revealed more valuable information that was not identifiable in the CT images including the topography of the mandibular and masticatory nerves.
Dorsal CT images (Fig 2B) allowed evaluation of the lateromedial axis of the mandibular condyle and articular space. The articular cartilage, subchondral bone, external auditory meatus, middle and inner ear, and temporohyoid joint were also easily evaluated (Fig 2C).

The rostrocaudal location of condyle in relation to mandibular fossa was examined on sagittal images (Fig 3B and 3C). The cross-sectional area of articular cartilage and subchondral bone displayed on sagittal CT images was smaller than the cross-sectional area of these components shown on transverse and dorsal CT images. The relationship between the TMJ and the temporohyoid joint, middle and inner ear was visualised. Likewise, in the anatomical sections, the caudal fibrous expansion of the articular disc and the caudal ligament of the articular capsule were well observed and also their relationship with the guttural pouch wall and superficial temporal vein and artery. The caudal ligament of the articular capsule was not visualised in CT images. The rostral compartments of the dorsal and ventral synovial pouches were clearly identified in the CT images (Fig 3B).

Fig 1: (A) Volume rendered 3D-reformatted image of the lateral aspect of the right TMJ showing a transverse-sectional plane of reference for Figures 1B and 1C; (B) Bone window transverse CT image (window width = 2354; window level= 154) and (C) transverse anatomical section (caudal aspect) of the right TMJ. The progression of CT and anatomical images was from rostral to caudal, from the level of the most rostral aspect of the zygomatic arch. The orientation of CT and anatomic sections is consistent: the right side is to the viewer’s left and dorsal is at the top of the image. 1 = parietal bone; 2 = temporal muscle; 3 = zygomatic process of the temporal bone; 4 = squamous part of the temporal bone; 5 = articular disc; 6 = caudal compartment of the dorsal synovial pouch (intra-articular fat tissue); 7 = articular cartilage; 8 = subchondral bone; 9 = mandibular condyle; 10 = ramus of the mandible (spongy bone); 11 = transverse facial vessels; 12 = masseter muscle; 13 = lateral pterygoid muscle; 14 = pterygoid venous plexus and maxillary artery; 15 = mandibular nerve; 16 = buccal vein; 17 = guttural pouch; 18 = stylohyoid bone; 19 = trigeminal nerve.

Fig 2: (A) Volume rendered 3D-reformatted image of the dorsal view of the right TMJ showing a dorsal-sectional plane of reference for Figures 2B and 2C; (B) Bone window dorsal CT image (window width = 2354; window level= 154) and (C) dorsal anatomical section (dorsal aspect) of the right TMJ. The progression of CT and anatomical images was from dorsal to ventral aspect. The lateral aspect is on the left side and the caudal aspect at the top of the image. 1 = temporal muscle; 2 = coronoid process; 3 = zygomatic process of the temporal bone; 4 = squamous part of the temporal bone; 5 = retroarticular process; 6 = mandibular condyle; 7 = articular cartilage; 8 = subchondral bone; 9 = articular disc; 10 = guttural pouch; 11 = tympanic part of the temporal bone (middle ear); 12 = caudal deep temporal vein; 13 = petrous part of the temporal bone; 14 = external auditory meatus; 15 = parotid salivary gland.
The present study, several criteria were used to reduce the presence of image artefacts and increase image contrast resolution, including thin anatomical slices (1 mm), higher x-ray parameters and detailed imaged algorithms (Nugent and Keobke 2001). However, the resultant images did not reach satisfactory contrast resolution to permit a well-defined visualisation of the TMJ soft tissues.

In horses, the principal disadvantages of CT imaging are related to the availability of the equipment and the need for general anaesthesia (Puchalski 2006). Fortunately, portable CT units have been developed for use in the standing horse, which may lead to more widespread use of the imaging method (McIlwraith 2003). A thorough knowledge of the anatomy is required for the proper interpretation of CT images of the equine TMJ (Arenchibia et al. 2000; Morrow et al. 2000; Smallwood et al. 2002). In the current study, frozen and plastinated anatomical sections were used to assist in the interpretation and establish accurate correlations with the CT images; such plastinated sections have also been useful in the interpretation of other different imaging methods in other medical fields (Latorre and Rodríguez 2007).

The CT images poorly delineated the soft tissue structure, associated with the TMJ, and such a finding may be related to the difference between the density of TMJ soft tissues and that of the surrounding bony tissue (Seeram 2001). Recent studies of other anatomical regions in the horse, such as the carpus, tarsus and distal extremity, described the potential of CT to evaluate soft
tissue structures including the vasculature (Kaser-Hotz et al. 1994; Tomlinson et al. 2003; Collins et al. 2004). These authors claimed that CT provided a good soft tissue texture assessment which was sufficient for a specific diagnosis. Currently, to obtain better delineation of soft tissues, an iodinated contrast medium has also been used (Collins et al. 2004; Puchalski et al. 2007).

In the present study, to minimise soft tissue findings associated with post mortem change, the CT study was performed within 2 h of euthanasia; however, several venous vessels were air-filled in the images. The air accumulation was attributed to post mortem changes as described by Morrow et al. (2000). These findings should be recognised since, in clinical cases, normal vessels appear hypoattenuated owing to their fluid-content (Kaser-Hotz et al. 1994). Other findings on the TMJs CT images that could be attributed to post mortem changes, which modified the imaging reference, were not identified in our study. Reports of CT imaging of the head in mature horses and foals (Morrow et al. 2000; Smallwood et al. 2002) did not mention any characteristic post mortem variation of the TMJ’s appearance.

Transverse, sagittal and dorsal CT images were obtained in the anatomical study of the TMJ. Transverse and sagittal CT views provided more information about the articular surface and position of the condyle, mandibular fossa and retro-articular process, similar to human results (Yu et al. 2000). The volume-3D reconstructed images confirm or refute suspicion of a lesion seen on the transverse view (Nugent and Keobke 2001). The dorsal view is used to assess the articular cartilage, subchondral bone and symmetry of the articular space. In man, the dorsal view is used to provide more information about the articular surface and position where these planes were recommended to evaluate the TMJ space (Yu et al. 2000). These authors claimed that CT provided a good soft tissue texture assessment which was useful to assess the articular cartilage, subchondral bone and symmetry of the articular space. In man, the dorsal view is used to confirm or refute suspicion of a lesion seen on the transverse view (Nugent and Keobke 2001). The volume-3D reconstructed images were helpful to visualise all 3 planes of the joint and the surface characteristics (Kau et al. 2005; Tucker and Sande 2002).

In conclusion, helical computed tomography is an excellent method for the detailed assessment of the bony structures of the equine TMJ. The current study did not, however, produce high resolution images of the TMJ soft tissues. The information provided by this study might be useful as a primary protocol for the CT study of the equine TMJ and could be used to assist clinicians in the interpretation the images.

Manufacturers’ addresses
1General Electric Co., Waukesha, Wisconsin, USA.
2Toshiba Medical Systems, Zoetermeer, The Netherlands.

References
Compared tomographic anatomy of the equine temporomandibular joint


Author contributions: