
ARITMETHIC LATTICES OF SO(1, n) AND UNITS OF GROUP RINGS

SHEILA CHAGAS, ÁNGEL DEL RIO, AND PAVEL A. ZALESSKII

Abstract. We establish that standard arithmetic subgroups of a special orthogonal
group SO(1, n) are conjugacy separable. As an application we deduce this property for
unit groups of certain integer group rings. We also prove that finite quotients of group
of units of any of these group rings determines the original group ring.

1. Introduction

In recent years there has been a great deal of interest in detecting properties of a

group G via its finite quotients, or more conceptually by its profinite completion Ĝ. To
detect properties of combinatorial or geometric nature in the profinite completion worked
particularly well for so called virtually compact special groups [49, 50]. These groups
defined and studied by Wise and his collaborators are playing a central role in the modern
geometric group theory (see [3, 16, 47, 48] and many others). The important property of
these groups is that they admit a hierarchy that survives in the profinite completion and
so can be used to detect properties of the original group. Bergeron, Hagung and Wise
[3, Theorem 1.10] proved that standard arithmetic subgroups of SO(1, n) are virtually
compact special (see also a Remark at the end of their paper for non-cocompact case).
The objective of this paper is to use this result to prove that these groups are conjugacy
separable and to deduce this property for groups of units U(ZH) of group rings ZH of
certain finite groups H (see Theorem 1.5). We also show that finite quotients of the unit
group U(ZH) of these group rings determine U(ZH) up to isomorphism and hence the
group ring itself. Note that the question of determining a group by its finite quotients
(or profinite completion) is an old question in group theory, but had a new wind in 21-st
century in geometric group theory.

A group G is termed conjugacy separable if given any two elements x and y that are
non-conjugate in G, there exists some finite quotient of G in which the images of x and
y are not conjugate. In other words the group is conjugacy separable if the conjugacy
class of every element is closed in the profinite topology of G. The notion owes its
importance to the fact, first pointed out by Mal’cev [23], that the conjugacy problem
has a positive solution in finitely presented conjugacy separable group. E. Grossman
[12] also observed that the residual finiteness of Out(H) is equivalent to the conjugacy
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separability of H for a finitely generated group H whose elementwise inner automorphisms
(i.e. automorphisms preserving conjugacy classes) are inner. Moreover, the observation
of Grossmann becomes especially important due to the result of Minasyan and Osin [27]
stating that every pointwise inner automorphism of a torsion-free relatively hyperbolic
group is inner (for torsion-free hyperbolic groups the result was obtained independently
by Bogopolsky and Ventura [4]).

Well-known classical examples of conjugacy separable groups are polycyclic-by-finite
groups, free-by-finite groups and surface-by-finite groups. Moreover, fundamental groups
of 3-manifolds are also conjugacy separable. Minasyan [26] proved that right angled Artin
groups are conjugacy separable. This result was used by Minasyan and the third author
to show [30] that all hyperbolic virtually compact special groups (in the sense of D.Wise)
are conjugacy separable.

The first objective of this paper is to extend the last result by relaxing the hyperbolicity
hypothesis. More precisely we prove the following:

Theorem 1.1. Let G be a group having compact special and toral relatively hyperbolic
subgroup of finite index. Then G is conjugacy separable. (see Definitions 3.2 and 3.3).

Arithmetic groups arise naturally as discrete subgroups of Lie groups, defined by arith-
metic properties. By the fundamental theorem of Borel and Harish-Chandra an arithmetic
subgroup Γ of the special orthogonal group SO(1, n) is a lattice (i.e a discrete subgroup
of finite covolume). An arithmetic lattice Γ of SO(1, n) is said to be standard (or of the
simplest type) if it comes from a quadratic form q defined over a totally real algebraic
number field such that its completion for one real place is isomorphic to SO(1, n) and for
all other real places is either positively or negatively defined. More precisely, let Rk be the
ring of integers of k. A standard arithmetic lattice Γ of SO(n, 1) is a group commensurable
with the subgroup SO(q, Rk) of Rk-points of SO(q) = {X ∈ SL(n + 1,C) | X tqX = q}.
The construction of Γ can be found in [31, Section 6.4], for example. The non-standard
arithmetic lattices that come from Hermitian forms are not considered in this paper. Note
also that for n even, all arithmetic lattices of SO(1, n) are standard (see [20, Remark 2.1]).

As an application of Theorem 1.1 we obtain the following:

Theorem 1.2. Standard arithmetic lattices of special orthogonal groups SO(1, n) are con-
jugacy separable.

It is known that arithmetic lattices having the Congruence Subgroup Property (see
Section 5 for definition) are not conjugacy separable (cf. [41, Theorem 3], [39, Proposition
8.26 and remark after it]). On the other hand, arithmetic subgroups of SL2(C) do not
have Congruence Subgroup Property but are conjugacy separable.

Based on this, the third author conjectured at Banff conference on arithmetic groups
(2013) that all arithmetic groups failing Congruence Subgroup Property are conjugacy
separable. Theorem 1.2 gives another evidence to this conjecture.

Note that all discrete subgroups of SO(1, 3) or equivalently of SL2(C) are virtually
special and so conjugacy separability holds for all groups commensurable with them. We
state this as the following corollary.
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Corollary 1.3. Let G be the fundamental group of a hyperbolic 3-orbifold. Then G is
conjugacy separable.

It is an open question weather non-standard arithmetic subgroups of SO(1, n) are vir-
tually compact special, so the methods of this paper do not give the result for such
arithmetic groups.

The results above allow us to prove conjugacy separability for the group of units U(ZG)
of the integral group rings of some finite groups G. These groups of units have nice residual
properties that allows to approach the question to what extent a finitely generated group
is determined by its finite quotients or equivalently by its profinite completion for U(ZG).

For unit groups the question takes the following form:

Question 1: If G and H are finite groups such that U(ZG) and U(ZH)
have the same finite epimorphic images up to isomorphism, are U(ZG) and
U(ZH) isomorphic?

It is worth to observe that the isomorphism type of the integral group ring of a finite
group is determined by its group of units, i.e. if G and H are finite groups such that U(ZG)
and U(ZH) are isomorphic then so are ZG and ZH [18, Proposition 2.2]. However this
does not imply that G and H are isomorphic [18].

It is well-known that the profinite completion of two finitely generated groups are
isomorphic if and only if the families of their finite quotients coincide (see [38, Corollary
3.2.8] for example). Since the unit group is finitely generated we can therefore reformulate

the question as follows: under which conditions does the profinite completion Û(ZG) of
U(ZG) determine U(ZG) up to isomorphism? Or more precisely, Question 1 can be
reformulated as follows:

Question 1̂: Does Û(ZG) ∼= Û(ZH) imply U(ZG) ∼= U(ZH), for G and
H finite groups?

Note that in general it is very difficult to decide whether a residually finite group G
is determined by its profinite completion. For example, it is a long standing question of
Remeslennikov whether a free group of finite rank is determined by its profinite completion
within all finitely generated residually finite groups.

To state our results on unit groups we need more terminology which we borrow from
[19, Definition 11.2.2].

Let A be a simple finite dimensional rational algebra. We say that A is exceptional if
it is isomorphic to one of the following types:

(1) a non-commutative division algebra non-isomorphic to a totally definite quaternion
algebra. (See Section 2 for the latter notion.)

(2) M2(D) with D either Q, an imaginary quadratic extension of Q or a totally definite
quaternion algebra over Q.

Lattices of the exceptional components of type (1) as well as in all non exceptional
components satisfy the celebrated Margulis Normal Subgroup Theorem [24, Theorem 4,
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Introduction]: a normal subgroup is either finite or of finite index. In particular these
groups are Fab, i.e. every sugroup of finite index has finite abelianization (this notion
comes from Galois theory [21]).

In contrast, lattices of exceptional components of type (2) are virtually compact special
and so have virtual cyclic retract property (VCR): every cyclic subgroup is a (not normal)
semidirect factor of a subgroup of finite index. This property was first introduced by Long
and Reid in [22], however, implicitly they were investigated much earlier. Many important
groups possesses this property: free groups, surface groups, hyperbolic 3-manifold groups,
virtually special groups, Right angled Artin groups and Coxeter groups (see [25, Corolary
1.6]). In fact, Minasyan proved [25, Theorem 1.5] that VCR is equivalent to virtual
abelian retract property.

Note that VCR is stable under direct product and commensurability (see [25, Theorem
1.4] that allows us to deduce the following characterization:

Theorem 1.4. Let G be a finite group and ZG be its group ring. Then the following
conditions are equivalent

(i) U(ZG) is virtually special;
(ii) U(ZG) has virtual cyclic retract property;

(iii) U(ZG) has virtual abelian retract property;
(iv) every non-commutative simple quotient of its rational group algebra is either a

totally definite quaternion algebra, or exceptional of type (2)

There exists a cohomological version of Question 1̂. According to Serre a group G is
called good if the cohomology ofG coincide with the cohomology of its profinite completion

in any finite module. More precisely, G is good if the natural homomorphism G −→ Ĝ
induces an isomorphism of cohomology groups

Hn(Ĝ,M) −→ Hn(G,M)

for any finite G-module M . In general it is not easy to decide whether a given group is
good, for example it is an open question whether mapping class groups are good.

Note that conjugacy separability is not preserved by passing to subgroup or overgroups
of finite index in general (see [7, 11]). A group where the conjugacy separability holds
for all finite index subgroups is called hereditarily conjugacy separable. We prove that for
the groups G from Theorem 1.4 the group of units U(ZG) is good, hereditarily conjugacy
separable and determined by its finite quotients.

Theorem 1.5. Let G be a finite group such that every non-commutative simple quotient
of its rational group algebra is either a totally definite quaternion algebra, or exceptional
of type (2). Then

(i) U(ZG) is good. In particular, the profinite completion of any torsion free subgroup
of U(ZG) of finite index is torsion free.

(ii) U(ZG) is hereditarily conjugacy separable.
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Theorem 1.6. Let G be a finite group such that every non-commutative simple quotient
of its rational group algebra is either a totally definite quaternion algebra, or exceptional
of type (2). Then the following conditions are equivalent for another finite group H:

(1) G ∼= H.
(2) ZG ∼= ZH.
(3) U(ZG) ∼= U(ZH).
(4) The profinite completions of U(ZG) and U(ZH) are isomorphic.
(5) U(ZG) and U(ZH) have the same finite epimorphic images.

Finally note that Menny Aka [1] proved that the profinite completion determines an
arithmetic group having Congruence Subgroup Property up to finitely many non isomor-
phic arithmetic groups. This shows that if U(ZG) has only one non-abelian not excep-

tional component, then there are only finitely many groups H such that Û(ZH) ∼= Û(ZG).

The paper is organized as follows. In Section 2 we introduce the necessary terminol-
ogy and notation. Section 3 is dedicated to the conjugacy separability, where we prove
Theorems 1.1 and 1.2. Section 4 deals with units of group rings: the proofs of Theorems
1.5 and 1.6 can be found there. In Section 5 we recall the statement of the Congruence
Subgroup Problem for arithmetic groups and units of group rings and use Theorem 1.5
to bound the virtual cohomological dimension of the congruence kernel of the unit group
of the group rings from Theorem 1.5.

Acknowledgement

The third author thanks Ashot Minasyan and Andrei Rapinchuk for fruitful discussions
during the work on this paper.

2. Notation and preliminaries

Let n be an non-zero integer. Then ζn denotes a complex primitive root of unity. If p is
a prime integer then vp(n) denotes the valuation of n at p, i.e. the maximum non-negative
integer k with pk dividing n. If m is another integer coprime with n then om(n) denotes
the order of n modulo m, i.e. the minimum positive integer k with nk ≡ 1 mod m.

We use standard group theoretical notation, for example, if g and h are elements of
a group G then gh = h−1gh, CG(g) denotes the centralizer of g in G, gG denotes the
conjugacy class of g in G and for a subgroup H of G, NG(H) denotes the normalizer of
H in G. We use N : H for extension of groups and GoH for split extensions, i.e. N : H
denotes a group G with a normal subgroup N such that G/N ∼= H, and G = NoH when

H is a normal complement of N in G. The profinite completion of G is denoted Ĝ and if

X is subset of G then X denotes the closure of the natural image of X in Ĝ.

For a positive integer n, Cn, Dn and Qn denotes the cyclic, dihedral and quaternion
groups of order n; Sn and An denote the symmetric and alternating groups on n symbols;
and for a commutative ring R we use the standard notation for the general linear group
GLn(R), the projective general linear group PGLn(R), the special linear group SLn(R)
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and the projective special linear group PSLn(R). In case R is a field with q elements then
the latter groups are denoted by GL(n, q),PGL(n, q), SL(n, q) and PSL(n, q), respectively.
Moreover, for n small enough SG[n,m] denotes the m-th group of order n in the GAP
library of small groups, i.e. SmallGroup(n,m) in GAP terminology.

The Wedderburn decomposition of a semisimple ring A is its expression as a direct
product of simple artinian rings. We refer to this simple factors as Wedderburn compo-
nents of A. The GAP package Wedderga [45] contains some functions which compute the
Wedderburn decomposition of groups algebras of finite groups. It is based on the methods
introduced in [33] and extended in [34]. A fundamental notion of these methods is that
of strong Shoda pair of a group G. Associated to every strong Shoda pair (H,K) of G
there is a Wedderburn component of QG whose structure can be explicitly given (see [19,
Section 3.5] for details). This will be used in the proof of Proposition 4.1.

The group of units of a non-necessarily commutative ring R, is denoted by U(R). In
case R is a subring of a finite dimensional rational algebra A then SLn(R) denotes the
group of elements of Mn(R) with reduced norm 1 in Mn(A).

If E/F is a Galois extension of fields of order n with Galois group generated by σ and
a ∈ U(F ) then (E/F, a) denotes the cyclic algebra, i.e.

(E/F, a) = F [u : u−1xu = σ(x)(x ∈ F ), un = a].

The quaternion algebras over a field F of characteristic different from 2 are defined as(
a, b

F

)
= F [i, j : i2 = a, j2 = b, ji = −ij],

for a, b ∈ U(F ). This quaternion algebra is said to be totally definite when F is a totally
real number field and a and b are totally positive. We use classical notation for the
Hamiltonian quaternion algebra: H(F ) =

(−1,−1
F

)
.

If q is a quadratic form defined over a commutative ring R then SO(q;R) denotes the
corresponding special orthogonal group. For positive integers n and m,

SO(n,m) = SO

(
n∑
i=1

x2i −
m∑
j=1

x2j ;R

)
.

Definition 2.1. Let G ⊆ GLn(C) be a linear algebraic group defined over Q. A subgroup
Γ ⊆ G is arithmetic if it is commensurable with GZ = G ∩ GLn(Z), i.e., if Γ ∩ GZ has
finite index both in Γ and in GZ.

Note that by the fundamental theorem of Borel and Harish-Chandra if G is semisimple
then Γ is a lattice in G (i.e. a discrete subgroup of finite covolume).

We give now a description of the class of arithmetic lattices to which the main theorem
applies.

Let f be a quadratic form of signature (n, 1) in n + 1 variables with coefficients in a
totally real algebraic number field K ⊂ R satisfying the following condition: For every
nontrivial (i.e., different from the identity) embedding σ : K → R the quadratic form
fσ is positive definite. Let A denote the ring of integers of K. We define the group
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Γ := SO(f, A) consisting of matrices of determinant 1 with entries in A preserving the
form f . Then Γ is a discrete subgroup of SO(f,R). Moreover, it is a lattice. Such
groups Γ (and groups commensurable to them) are called standard arithmetic subgroups
of SO(n, 1) (or of the simplest type). Note that if Γ is non-uniform or n is even, then Γ
is a standard arithmetic lattice (see [20, Remark 2.1]).

In general, for n odd, SO(1, n) has another type of cocompact arithmetically defined
subgroups, given as the groups of units of appropriate skew-Hermitian forms over quater-
nionic algebras and other families of arithmetic lattices exist for n = 3 and n = 7. For
n 6= 3 It is not known whether these groups are virtually compact special, so they are not
considered in this paper.

3. Conjugacy separability

Recall that the profinite topology on a group G is a topology for which the set of all
normal subgroups of finite index is taken as a base of the identity.

We say that an element g of a group G is conjugacy distinguished in G if its conjugacy
class gG is closed in the profinite topology of G. For residually finite G this exactly means

gĜ ∩ G = gG. Note that G is conjugacy separable if and only if every element of G is
conjugacy distinguished.

Recall that a subgroup H of G is separable in G if for every g ∈ G\H there is a normal
subgroup of finite index K in G such that g 6∈ KH.

The following proposition follows directly from the proof of [6, Proposition 2.1], having
in mind that as H is assumed to be hereditarily conjugacy separable we have that CH(xm)
is dense in CĤ(xm) [26, Corollary 12.3].

Proposition 3.1. Let H be a normal subgroup of index m ∈ N in a group G and let
x ∈ G. Suppose that H is hereditarily conjugacy separable and the following conditions
hold:

(i) x is conjugacy distinguished in CG(xm);
(ii) each finite index subgroup of CG(xm) is separable in G.

Then x is conjugacy distinguished in G.

Definition 3.2. A group G is said to be virtually compact special if it has a finite index
subgroup isomorphic to the fundamental group of a compact special cube complex (see
[16] for details).

Definition 3.3. A group G is called toral relatively hyperbolic if G is torsion-free, and
hyperbolic relative to a finite set of finitely generated abelian subgroups.

Definition 3.4. A subbgroup H of a group G is said to be malnormal if H ∩Hg = 1 for
any g ∈ G \H.

Lemma 3.5. Let G be a a virtually compact special toral relatively hyperbolic group. Let
g ∈ G be an element of infinite order. Then g is conjugacy distinguished in G.
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Proof. Let g ∈ G be an infinite order element. Let H be a finite index subgroup of G
such that H is a compact special and toral relatively hyperbolic. By [26, Corollary 2.2],
H is hereditarily conjugacy separable.

Since g is of infinite order, gm ∈ H for some integer m. Let γ be a element of Ĝ such

that gγ ∈ G. Observe that Ĝ = GĤ, so we can write γ = γ0δ, where γ0 ∈ G and δ ∈ Ĥ.

Now substituting g by gδ, we can suppose that γ ∈ Ĥ. Since H is conjugacy separable,
gm and (gγ)m are conjugate in H, so we may assume that gm = (gm)γ and so γ ∈ CĤ(gm).

We have two cases to consider:

Case 1: Suppose that gm is conjugate to an element of a parabolic subgroup of H.
We may assume then that gm is in some parabolic subgroup P , and since parabolic
subgroups are virtually malnormal (See [14, Remark 2.2]), CH(gm) is contained in P .

Then CH(gm) ≤ P and since CH(gm) = CĤ(gm) by [26, Proposition 3.2], we may deduce

that γ belongs to the closure of this parabolic subgroup in Ĝ. One deduces from the cyclic
subgroup separability of virtually special groups (see [8, Theorem 1.4]) that the closure of

a free abelian group in Ĥ is a free profinite abelian group, i.e. the closure coincides with
its profinite completion. Then from conjugacy separability of virtually abelian groups one
deduces the result.

Case 2: Suppose now that gm is not conjugate to an element of any parabolic subgroup
of H. So gm is a hyperbolic element and, by [35, Theorem 4.3] CG(gm) is virtually cyclic
and so is conjugacy separable. By [26, Corollary 12.3 and Corollary 12.2], CG(gm) is dense
in CĜ(gm), and by [8, Theorem 1.4], its closure coincides with the profinite completion.
Thus we deduce from conjugacy separability of CG(gm) that g and gγ are conjugate in
CG(gm) in this case. This finishes the proof. �

Proposition 3.6. Let G be a virtual compact special toral relatively hyperbolic group.
Suppose that G splits as a semidirect product G = H o 〈x〉, where H is torsion-free and
x has finite order. Then any torsion element of G is conjugacy distinguished.

Proof. We shall use induction on the index |G : H| = n to prove that every torsion element
g of G is conjugacy distinguished. This is clear if n = 1 or g = 1, so we suppose g 6= 1,
n > 1, and the induction hypothesis.

Set R = H〈g〉. If |R : H| < n then by the induction hypothesis R has the state-
ment of the proposition, so g is conjugacy distinguished in R. But then g is conjugacy
distinguished in G, as |G : R| ≤ |G : H| <∞.

Therefore we can assume that |H : R| = n = |G : H|. It follows that G = R, i.e.,
G = H〈g〉 ∼= H o 〈g〉, as H is torsion-free and g has finite order (which must then be
equal to n). We will now consider two cases.

Case a: Suppose that n is a prime number p. Then g is conjugacy distinguished in G
by [30, Corollary 3.9.].

Case b: n is a composite number. Thus n = mp for some prime p with 1 < m < n.

Let K = H〈gm〉. Then K ∼= HoCp. Thus K is hereditarily conjugacy separable by the
induction hypothesis, as |K : H| = m < n. Evidently, K C G and |G : K| = m. By [28,
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Theorem 1.1] CG(gm) is relative quasiconvex and since all relative quasiconvex subgroups
are separable by [14, Theorem 4.7 combined with Theorem C], it follows that every finite
index subgroup of CG(gm) is separable in G, so to use Proposition 3.1 it remains to check
that g is conjugacy distinguished in CG(gm).

Set K1 = CG(gm) ∩ H, and observe that CG(gm) = K1〈g〉 ∼= K1 o (Z/n). Moreover,
K1 is toral relatively hyperbolic virtually compact special as |CG(gm) : K1| = n <∞ and
CG(gm) is toral relatively hyperbolic virtually compact special by [28, Theorem 1.1].

To verify that g is conjugacy distinguished in CG(gm), consider any element h ∈ CG(gm)
which is not conjugate to g in CG(gm). Since gm is central in CG(gm), we can let L be the
quotient of CG(gm) by 〈gm〉, and let φ : CG(gm)→ L denote the natural epimorphism.

Clearly φ(K1) ∼= K1, since K1 ∩ kerφ = {1}. Therefore φ(K1) is torsion-free and
L = φ(K1)〈φ(g)〉 ∼= K1 o (Z/mZ), again L is virtually compact special groups since
this class is closed for finite index overgroups. Consequently, L is hereditarily conjugacy
separable by the induction hypothesis, as |L : K1| = m < n. Let us again consider two
subcases.

Subcase b.1: Suppose that φ(g) and φ(h) are not conjugate in L. Then there is a finite
group M and a homomorphism ψ : L→M such that ψ(φ(g)) is not conjugate to ψ(φ(h))
in M . Thus the homomorphism η = ψ ◦ φ : CG(gm)→ M will distinguish the conjugacy
classes of g and h, as required.

Subcase b.2: Assume that φ(g) is conjugate to φ(h) in L. Since kerφ ⊆ 〈g〉, we can
deduce that there is y ∈ CG(gm) such that ygy−1 = zh, for some z ∈ 〈g〉.

Now, z 6= 1, since we assumed that h is not conjugate to g in CG(gm). Therefore
1 6= ξ(z) = z, where ξ : CG(gm) → 〈g〉 is the natural retraction (coming from the
decomposition of CG(gm) as a semidirect product of K1 and 〈g〉). Recalling that 〈g〉 is
abelian, we see that ξ(h) = ξ(ygy−1) = ξ(z)ξ(h). Therefore ξ(h) is not conjugate to ξ(g)
in the finite cyclic group 〈g〉. Thus we have distinguished the conjugacy classes of g and
h in this finite quotient of CG(gm).

Subcases b.1 and b.2 together imply that g is conjugacy distinguished in CG(gm).
Therefore we have verified all of the assumptions of Proposition 3.1 (for G and the finite
index normal subgroup K C G), so we can apply this proposition to deduce that g is
conjugacy distinguished in G. Thus Case 2 is completed. This finishes the proof of the
proposition. �

We can now prove Theorem 1.1 and Theorem 1.2:

Proof of Theorem 1.1. By hypothesis G has a toral relatively hyperbolic subgroup H of
finite index that we may assume to be normal taking its core; in particular H is torsion
free and so is hereditarily conjugacy separable by Lemma 3.5. We use induction on
n = [G : H]. Let g be an arbitrary element of G, we need to prove that g is conjugacy
distinguished. If g has infinite order the result follows from Lemma 3.5. Suppose that

g has finite order and gγ ∈ G for some γ ∈ Ĝ. Since Ĝ = ĤG, one has γ = g0η for

some g0 ∈ G and η ∈ Ĥ, so conjugating g with g0 we may assume that γ = η ∈ Ĥ. Set
K = H〈g〉. Then K = H o 〈g〉. Then by Proposition 3.6 g is conjugacy distunguished in
K, i.e. there exists h ∈ H such that gh = gγ as needed. �
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Proof of Theorem 1.2. Observe that any torsion free lattice in SO(1,n) is the fundamental
group of a finite volume hyperbolic manifold and is therefore relatively hyperbolic to
cusps which are free abelian groups. Then the result follows from Theorem 1.1, since
by [3, Theorem 1.10] a standard arithmetic subgroup of SO(1, n) is virtually compact
special. �

Remark 3.7. Note that Spin(1, 5) ∼= SL(2,H), where H is the real algebra of Hamilton-
ian quaternions and so arithmetic subgroups of it are commensurable with arithmetic
subgroups of SO(1, 5). Moreover, they are commensurable with a standard arithmetic
subgroup of SO(1, 5). Indeed, let H be a torsion free arithmetic subgroup of SL(2,H)
contained in SO(1, 5). Then H is the fundamental group of a hyperbolic manifold M .
But M is not closed, since the fundamental group of a closed hyperbolic manifold is
hyperbolic, but H contains Z× Z. Then by [31, Proposition 6.4.2], H is standard.

From Remark 3.7 we deduce the following:

Corollary 3.8. Let H be an algebra of quaternions. Standard arithmetic subgroups of
SL(2,H) are conjugacy separable.

4. Unit groups

In this section G is a finite group, ZG denotes its integral group ring and U(ZG) the
group of units of ZG. The aim of this section is to prove Theorems 1.5 and 1.6. So we
assume that G satisfies the hypothesis of Theorem 1.5, i.e. every non-commutative simple
quotient of QG is either totally definite quaternion or exceptional of type 2.

We start with the proof of Theorem 1.5.

Proof of Theorem 1.5 Note that ZG is an order in QG and QG =
∏n

i=1Ai with Ai = QGei,
where e1, ..., en are the primitive central idempotents of QG. We order the Ai’s so that
Ai is either commutative or totally definite quaternion if and only if i > m. For every
i = 1, . . . , n we fix an order Ri in Ai (for example we can take Ri = ZGei).

(i) It is well known that goodness is closed for commensurability and direct products (cf.
[15, Lemma 3.2 and Proposition 3.4]). It is also well known that, U(ZG) is commensurable
with A×

∏
i>mR

1
i where A is a finitely generated abelian group [19, Remark 4.6.10 and

Proposition 5.5.6]).

Therefore we need to prove that if R is an order in D with M2(D) an exceptional
component of type (2) then SL2(R) is good. The goodness of SL2(Z) is the subject of
[43, Exercise 2, page 16]. By [15, Corollary 4.3], if D is an imaginary quadratic field then
SL2(R) is good. Thus we need only to consider the case where D is a totally definite
quaternion algebra over Q.

By Remark 3.7, Spin(1, 5) ∼= SL(2,H), where H is the real algebra of Hamiltonian
quaternions and so SL2(R) is commensurable with arithmetic lattices of SO(1, 5). By [3,
Theorem 1.10] standard arithmetic lattices of SO(1, n) are virtually compact special and
Haglund and Wise proved in [16] that any such group is a virtually virtual retract of right
angled Artin group. By [30, Proposition 3.8] virtually virtual retracts of right angled
Artin group are good.
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It remains to explain that SL2(R) is commensurable with a standard arithmetic sub-
group of SO(1, 5). Let H be a torsion free finite index subgroup of SL2(R) contained in
SO(1, 5). Then H is the fundamental group of a hyperbolic manifold M . Then M is not
closed, since the fundamental group of a closed hyperbolic manifold is hyperbolic, but H
contains Z × Z. Then by [31, Proposition 6.4.2], H is standard. This finishes the proof
of (i).

(ii) Taking Ri = ZGei the map x 7→ (xe1, ..., xen) is an embedding of ZG in
∏

iRi.
Then U(ZG) = ZG ∩

∏
i U(Ri) ⊆

∏
i U(Ri) ⊆

∏
iRi. By Theorem 1.2 combined with

Remark 3.7, we have that U(Ri) is hereditarily conjugacy separable. By [10, Theorem
1.2] a direct product of hereditarily conjugacy separable groups is hereditarily conjugacy
separable, hence so is U(ZG). This finishes the proof of Theorem 1.5. �

For the proof of Theorem 1.5 it was enough to use minimal properties of the simple
components of QG. However for the proof of Theorem 1.6 we need to analyze more
carefully the possible simple components Ai and the projections Gei of G in each Ai.
Observe that each Ai is either exceptional of type 2 or a division algebra. The possible
exceptional components of type 2 and their respective groups Gei where classified in [9].
On the other hand the finite subgroups of division algebras and the minimal division
algebras containing them were classified by Amitsur in [2]. These two classifications will
be the main tool for the proof of Theorem 1.6. As a technicality we start with a list of
groups having a non-allowed (i.e. not satisfying Theorem 1.4 (iii)) simple component on
their rational group algebra.

G Structure Component of QG
SG[12, 3] A4 = PSL(2, 3) M3(Q)
SG[20, 3] C5 o C4 M4(Q)
SG[24, 12] S4 = PGL(2, 3) M3(Q)
SG[32, 6] C3

2 o C4 M4(Q)
SG[36, 9] C2

3 o C4 M4(Q)
SG[36, 10] S3 × S3 M4(Q)
SG[60, 5] A5 = PSL(2, 5) M4(Q)
SG[64, 138] (C4

2 o C2) o C2 M4(Q)
SG[72, 40] S2

3 o C2 M4(Q)
SG[80, 49] C4

2 o C5 M5(Q)
SG[120, 34] S5 M4(Q)
SG[288, 1025] (((C4

2) o C3) o C2) o C3 M6(Q)
SG[320, 1581] (((C2 ×Q8) : C2) : C5).C2 M5(Q)
SG[360, 118] A6 = PSL(2, 9) M5(Q)

Table 1. The second column displays structural information of the group
G displayed in the first column. The last column displays one Wedderburn
component of QG.
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The verification of the information displayed in Table 1 can be done using the GAP
package Wedderga [45]. For example, if G = SG[80, 49] then

QG ∼= Q⊕Q(ζ5)⊕ 3M5(Q).

This can be verified with the following GAP calculation

LoadPackage("wedderga");;

G:=SmallGroup(80,49);;QG:=GroupRing(Rationals,G);;

WedderburnDecompositionInfo(QG);

[ [ 1, Rationals ], [ 1, CF(5) ], [ 5, Rationals ], [ 5, Rationals ],

[ 5, Rationals ] ]

The reader can verify the information displayed in Table 1 with similar calculations.

The exceptional components of type (2) that can occur as Wedderburn components of
the rational group algebra of a finite group are classified in [9], as well as the finite
groups which have such exceptional components in their rational group algebra as a
faithful Wedderburn component (i.e. the group embeds faithfully on the given exceptional
component). While the number of such exceptional components is finite (actually 7),
the dimension of the exceptional components of type (1) which occur as Wedderburn
components of the rational group algebra of a finite group is unbounded. This follows
from Amitsur’s characterization of finite subgroups of division rings [2] and specially from
its Theorem 3. For our proof of Theorem 1.6 we will need the following proposition of
independent interest.

Proposition 4.1. Let A be a non-commutative rational algebra generated over Q by a
finite subgroup G of U(A). Suppose that every non-exceptional simple component of QG
is a division algebra (equivalently either a field or a totally definite quaternion algebra).
Then A and G are as in Table 2.

In particular, G has an abelian normal subgroup A such that G/A has exponent dividing
4.

Proof. The hypothesis implies that for every epimorphic image H of G, all the non-
exceptional simple components of QH are division algebras. In particular, G has not an
epimorphic image isomorphic to one of the groups in Table 1.

Case 1: Suppose that A is a division algebra.

In this case we consider separately the different options from Amitsur classification of
finite subgroups of division rings [2] as presented in [44].

Subcase 1.1: Suppose that G is a Z-group, i.e. every Sylow subgroup of G is cyclic.
Then G is in one of the cases b) or c) in [44, Theorem 2.1.5] (case a) is excluded because
as A is non-commutative, G is non-abelian).

In case b) we have G = 〈a〉m o 〈b〉4 with m odd and b acting on 〈a〉 by inversion.

Then H = G/ 〈b〉 = D2m and one simple component of QG is of the form M2(Q(ζm +
Q(ζ−1m ))). By assumption this must be exceptional and as the center is totally real it must
be Q, so that ζm + ζ−1m ∈ Q. As m is odd and different from 1 it follows that m = 3.
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A G

H(Q) Q8(
−1,−3

Q

)
Q12

H(Q(
√

2)) G = Q16(
−1,−3
Q(
√
3)

)
G = Q24(

ζ2n−1 ,−3
Q(ζ2n−1 )

)
G = C3 o C2n , (n ≥ 4), C2n acting on C3 by inversion

H(Q(ζm)) G = Q8 × Cm,m and om(2) odd

M2(Q) S3, D8, D12

M2(Q(i)) C4 × S3, SG[16, 6] = C8 o C2,
SG[16, 13] = (C4 × C2) o C2, SG[32, 11] = (C4 × C4) o C2

M2(Q(
√
−2)) SG[16, 8] = C8 o C2

C3 × S3, C3 ×D8, C3 ×Q8, C6 × S3,
M2(Q(

√
−3)) SG[24, 8] = (C6 × C2) o C2, SG[36, 6] = C3 × (C3 o C4),

SG[72, 30] = C3 × ((C6 × C2) o C2)
SG[32, 8] = (C2 × C2).(C4 × C2), SG[32, 44] = (C2 ×Q8) o C2,

M2(H(Q)) SG[32, 50] = (C2 ×Q8) o C2, Q8 × S3,
SG[64, 137] = ((C4 × C4)× C2) o C2

M2

(
−1,−3

Q

)
SG[48, 18] = C3 oQ16, SG[48, 39] = (C4 × S3) o C2.

Table 2. The algebras and groups satisfying the hypothesis of Propo-
sition 4.1. The cases where A is a division algebra are above the double
line.

Therefore G = 〈a〉3o 〈b〉4 = Q12 and A =
(
−1,−3

Q

)
. The latter is obtained with the strong

Shoda pair (〈a, b2〉 , 1).

In case c), G = G0 × G1 × · · · × Gs with s ≥ 1, G0 cyclic, gcd(Gi, Gj) = 1 for i 6= j
and for each i = 1, . . . , r we have Gi = Cpa o (Cqn1

1
× · · · × Cnr

qr ) where p, q1, . . . , qr are

distinct primes and if qkii is the order of the kernel of the action of Cqni
i

on Cpa then for

every j = 1, . . . , r we have

(1) ki < ni,

(2) vqj

(
o |G|
|Gi|

(p)

)
< oqkj (p),

(3) if either qi is odd, or q = 2 and p ≡ 1 mod 4, then p 6≡ 1 mod qki+1
i ,

(4) if qi = 2 and p ≡ −1 mod 4 then either ki = 1 or p 6≡ −1 mod 2ki .

Fix i = 1, . . . , s and Gi = Cpa o (Cqn1
i
× · · · × Cqnr

r
), as above. Then Gi has a unique

central cyclic subgroup N of order qk11 . . . qkrr and H = Gi/N = 〈A〉pm o 〈B〉
q
di
1 ···q

dr
r

with

di = ni−ki > 0 for each i and faithful action. Then Cpm is a maximal abelian subgroup of
H and hence QH has epimorphic image isomorphic to M

q
d1
1 ···q

dr
r

(F ) where F is the fixed
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field of the automorphism of Q(ζpm) given by σ(ζpm) = ζtpm if AB = At. As this component

must be exceptional we have qdi1 · · · qdrr = 2 and F is either Q or imaginary quadratic. This
shows that s = 1, G1 = Cpm oC2n with C2n acting on Cpm by inversion, so that k1 = n−1
and F = Q(ζpm + ζ−1pm ). The argument of the previous case shows that pm = 3. By
condition (3) we have k1 ≥ 3, so that n ≥ 4. Moreover, G also have an epimorphic image
isomorphic to K = G0×H and if m = |G0| then QK has a simple component isomorphic
to M2(Q(ζm)). As m is odd and Q(ζm) must be either Q or imaginary quadratic and
coprime with 3 it follows that m = 1. Thus G = C3 o C2n with action by inversion and
n ≥ 4. Moreover the unique Wedderburn component of QG on which G embeds faithfully

is obtained with the strong Shoda pair (C3 × C2n−1 , 1) so that A =
(
ζ2n−1 ,−1
Q(ζ2n−1 )

)
.

Subcase 1.2. Now we suppose that G is not a Z-group. Then G is as in cases b) or c)
in [44, Theorem 2.1.4]. However case b)i), b)iv) and c) are excluded because S4, PSL(2, 3)
and PSL(2, 5) are epimorphic images of the binary octaedral group, SL(2, 3) and SL(2, 5),
respectively, appearing in Table 1. So G is in one of the cases b)i), b)ii) or b)iii).

In case b)ii), G = Q4m, a quaternion group with m even. Then G has a central subgroup
N of order 2 with H = G/N = D2m a dihedral group of order 2m. Then QH has a simple
component isomorphic to M2(Q(ζm + ζ−1m )) and hence m ∈ {2, 4, 6}. In the three cases
G has a cyclic subgroup H of index 2 which yields a strong Shoda pair (H, 1) and the
corresponding Wedderburn component is the cyclic algebra A = (Q(ζ2m), σ,−1) with

σ(ζ2m) = ζ−1. If n = 2 then A = H(Q) =
(
−1,−1

Q

)
, if n = 4 then A = H(Q(

√
2)) and if

n = 6 then A =
(
−1,−3
Q(
√
3)

)
.

In case b)iii) G = Q8 ×M with M a Z-group of order m with m and o2(m) odd. The
latter means that M is either cyclic or one of the groups of Case c) in [44, Theorem 2.1.5].
However, the latter case must be excluded because then G has an epimorphic image
isomorphic to K = Q8 × C2n with n ≥ 4 and QK has a simple component isomorphic to
H(Q) × Q(ζ2n) ∼= MQ(ζ2n ). Therefore M is cyclic. Again G has a cyclic subgroup H of
index 2 and (H, 1) is a strong Shoda pair which yields a division algebra isomorphic to
H(Q)×Q(ζm) ∼= H(Q(ζm)). This finish the proof for Case 1.

Case 2. Suppose that A is not a division algebra. Then A is exceptional of type (2), i.e.
A = M2(D) with D either Q, an imaginary quadratic extension of Q or a totally definite
quaternion algebra over Q. Actually, by the main result in [9], D is either Q, Q(

√
−1),

Q(
√
−2), Q(

√
−3), H1 = H(Q), H3 =

(
−1,−3

Q

)
or H5 =

(
−2,−5

Q

)
and G is one the groups

in [9, Table 2]. However G is not any of the groups in the first column of Table 1 or
Table 3, because they have an epimorphic image in Table 1. This can be verified easily
using GAP. For example, the following GAP calculation shows that SG[64, 138] is an
epimorphic image of SG[128, 937]:

G:=SmallGroup(128,937);;

NS:=NormalSubgroups(G);;

SSortedList(NS,x->IdSmallGroup(G/x));

[ [ 1, 1 ], [ 2, 1 ], [ 4, 2 ], [ 8, 3 ], [ 8, 5 ], [ 16, 11 ], [ 32, 27 ],

[ 64, 138 ], [ 128, 937 ] ]
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G Structure Epimorphic image

SG[24, 3] SL(2, 3) SG[12, 3] = PSL(2, 3)
SG[40, 3] C5 o C8 SG[20, 3] = C5 o C4

SG[48, 28] O∗ = 2.S4 = SL(2, 3).2 SG[24, 12] = S4

SG[48, 29] GL(2, 3) SG[24, 12] = PSL(2, 3)
SG[48, 33] C4 : SL(2, 3) SG[12, 3] = PSL(2, 3)
SG[64, 37] C2 : (C3

2 o C4) SG[32, 6] = C2
3 o C4

SG[72, 19] C2
3 o C8 SG[32, 6] = C2

3 o C4

SG[72, 20] (C3 o C4)× S3 SG[36, 10] = S3 × S3

SG[72, 22] (C6 × S3) : 2 SG[36, 10] = S3 × S3

SG[72, 24] C2
3 : Q8 SG[36, 10] = S3 × S3

SG[72, 25] C3 × SL(2, 3) SG[12, 3] = PSL(2, 3)
SG[96, 67] SL(2, 3) : C4 SG[24, 12] = S4

SG[96, 190] (C2 × SL(2, 3)) o C2 SG[24, 12] = S4

SG[96, 191] (C2 : S4) o C2 SG[24, 12] = S4

SG[96, 202] ((C2 ×Q8) o C2) o C3 SG[12, 3] = A4

SG[120, 5] SL(2, 5) SG[60, 5] = PSL(2, 5)
SG[128, 937] (Q8 ×Q8) o C2 SG[64, 138] = (C4

2 o C2) o C2

SG[144, 124] C3 o (C2 : S4) SG[24, 12] = S4

SG[144, 128] S3 × SL(2, 3) SG[12, 3] = PSL(2, 3)
SG[144, 135] (C2

3 o C8) o C2 SG[36, 9] = C2
3 o C4

SG[144, 148] C2
3 o ((C4 × C2) o C2) SG[36, 10] = S2

3

SG[160, 199] ((C2 ×Q8) o C2) : C5 SG[80, 49] = C4
2 o C5

SG[192, 989] (SL(2, 3) o C4) o C2 SG[24, 12] = S4

SG[240, 89] C2 o S5 SG[120, 34] = S5

SG[240, 90] SL(2, 5) o C2 SG[120, 34] = S5

SG[288, 389] C2
3 o (C2

4 o C2) SG[72, 40] = S2
3 o C2

SG[384, 618] (Q2
8 o C3) o C2 SG[12, 3] = A4

SG[384, 18130] (Q2
8 o C3) o C2 SG[24, 12] = S4

SG[720, 409] SL(2, 9) SG[360, 118] = PSL(2, 9)
SG[1152, 155468] ((Q2

8 o C3) o C2) o C3 SG[288, 1025] = ((C4
2 o C3) o C2) o C3

SG[1920, 241003] C2 : (C4
2 o A5) SG[60, 5] = A5

Table 3. : Groups from [9, Table 2] which have a proper epimorphic image
in Table 1. The structure displayed is chosen to help in the recognition of
the groups in the third column as epimorphic image of those in first column

Therefore G is one of the groups in [9, Table 2] not appearing neither in Table 1 nor in
Table 3. They are precisely the groups displayed in the last six rows of Table 2. Then, [9,
Theorem 3.7] implies that in each case A is as in the corresponding line of the table. �

We are ready for the proof of Theorem 1.6.
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Proof of Theorem 1.6. Clearly (1) implies (2) and (3) implies (4) holds. The equivalence
of (4) and (5) is the subject of [38, Corollary 3.2.8]. The equivalence of (2) and (3) is
proved in [18, Proposition 2.2].

Let e1, . . . , en be the primitive central idempotents of QG. Then g 7→ (ge1, . . . , gen)
defines an injective group homomorphism f : G →

∏n
i=1Gei. Each Gei satisfies the

hypothesis of the theorem because they are epimorphic images of G and hence the Wed-
deburn components of QGei are also Wedderburn components of G. Moreover, each Gei
embedded in QGei which is either a division algebra or exceptional. By Proposition 4.1,
Gei has an abelian normal subgroup Bi such that Gei/Bi has exponent dividing 4. Then
G =

∏n
i=1Ai is an abelian normal subgroup of

∏n
i=1Gei such that (

∏n
i=1Gei)/B has ex-

ponent dividing 4. As f is injective, A = f−1(B) is an abelian normal subgroup of G with
G/A of exponent dividing 4. In particular, G is metabelian and by [40, Theorem 31.1],
G has a torsion-free normal complement in U(ZG), i.e. U(ZG) = N oG with N torsion
free.

As G is metabelian, (2) implies (1) is a consequence of a theorem of Withcomb [46]
(see also [36, Corollary 14.2.6]).

(4) implies (3) By Theorem 1.5, N̂ is torsion free. Consider the following commutative
diagram

U(ZG)

((��

Û(ZG) = Û(ZH) // U(ZG)/N

U(ZH)

66OO

Since N̂ is torsion free, the restriction of the lower map to H is injective, and so H is
isomorphic to a subgroup of G. In particular, H satisfies the hypotheses of the theorem

and so has a torsion free complement M whose profinite completion M̂ is torsion free.
Therefore, by symmetry G is isomorphic to a subgroup of H. This implies that G and H
are isomorphic. �

Remark 4.2. The converse of Lemma 4.1 holds, i.e. every pair A and G appearing in
the lemma satisfy the hypothesis of the lemma. Table 4 displays the non-commutative
Wedderburn components of the group algebras for all the groups in the lemma. This
can be verified for most groups using the GAP package Wedderga. For example one
can compute the Wedderburn components of QG for G = SG[72, 37] with the following
calculation:

G:=SmallGroup(72,30);;

gap> QG:=GroupRing(Rationals,G);;

SSortedList(WedderburnDecompositionInfo(QG)$

[ [ 1, Rationals ], [ 1, CF(3) ], [ 2, Rationals ], [ 2, CF(3) ] ]
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which shows that the only non-commutative components are M2(Q) and M2(Q(
√
−3)).

Of course we cannot rely on GAP for the infinite families appearing in lines 5 and 6 of
Table 2. For the second one can use that QQ8 = 4Q⊕H(Q) and QCm = ⊕d|mQ(ζd). Then
every non-commutative simple component of Q(Q8×Cm) is isomorphic to H(Q)⊗QQ(ζd) =
H(Q(ζd)). Since d divides m and m and om(2) are odd, so are d and od(2). This implies
that −1 is not a sum of two squares in Q(ζd) [32] and hence H(Q(ζd)) is a division algebra
(see e.g. [37, Proposition 1.6]).

Finally, if G = C3 o C2n as in (2.e) then

QG = QC2n ⊕⊕n−1i=0 Ak

with Ak =
(
ζ
2k
,−3

Q(ζ
2k

)

)
. To prove this we can use the methods introduced in [33] to compute

the Wedderburn decomposition of group algebras of so called strongly monomial groups
(see [19, Section 3.5]). Using [19, Theorems 3.5.5 and 3.5.12 and Problem 3.4.3] it follows
that there is a one-to-one correspondence between the non-commutative Wedderburn
components of QG and the subgroups of Z(G). Observe that Z(G) is cyclic of order
2n−1. The Wedderburn component associated to the subgroup Hk of index 2k in Z(G) is
the cyclic algebra (Q(ζ3·2k)/Q(ζ2k), ζ2k) which is the quaternion algebra described above.

Moreover A0 = M2(Q), A1 =
(
−1,−3

Q

)
, A2 = M2(Q(i)) and Ak is a division algebra for

k ≥ 3. To prove that A2 = M2(Q(i)), observe that i(1 + i)2 − 3 = −1. To prove that Ak
is a division algebra observe that if m = 3 · 2k and r is an integer satisfying r ≡ 1 mod 3
and r ≡ 1 mod 2k then in the notation of [2], G/Hk = U3·2k,r and Ak = U3·2k,r. As U3·2k,r
is a subgroup of a division algebra, by [2, Theorem 3], Ak is a division algebra.

Remark 4.3. Observe that the only exceptional components of type 1 appearing in Table 4

are
(
ζ
2k
,−3

Q(ζ
2k

)

)
with k ≥ 3 and H(Q(ζd)) with 1 ≤ d and d and od(2) are odd. If R is an

order in one of these algebras then the real rank of SL1(R) is greater than 1. Indeed,
for the center of both algebras are totally complex of degree 2k−1 and hence their rank is
the number of places of their center which is 2k−2 for the first algebra and ϕ(d)/2 for the
second one (see [31, Examples 8.1.7]). The first is greater than 1 because k ≥ 3. To see
that φ(d)/2 > 1 we use that d > 1 and hence it is divisible by a odd prime p and op(2) is
odd. This implies that p ≥ 7 and hence ϕ(d) ≥ ϕ(p) ≥ 6.

This shows that the groups satisfying the hypothesis of Theorem 1.5 and Theorem 1.6
are precisely those for which the groups of units of reduced norm 1 in an order of each Wed-
derburn component of the rational group algebra satisfies the Margulis Normal Subgroup
Theorem (and according to Serre’s Conjecture should have the Congruence Subgroup
Property, see the next section).

5. Congruence Subgroup Problem

Our considerations in the previous sections strongly connected to the Congruence Sub-
group Problem. We state it here for the reader convenience.

Let k be a global field and G be an almost simple, connected, simply-connected algebraic
group over k. Let G(O) be the group of S-integral points in G, where O = O(S) is the
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G TDQA Excep. 1 Excep. 2

Q8 H(Q)

Q12

(
−1,−3

Q

)
M2(Q)

Q16 H(Q(
√

2)) M2(Q)

Q24 H(Q),H(Q(
√

3)) M2(Q)

C3 o C2n

(
−1,−3

Q

) (
ζ
2k
,−3

Q(ζ
2k

)

)
(3 ≤ k < n) M2(Q),

(n ≥ 4) M2(Q(i))
Q8 × Cm H(Q) H(Q(ζd))(1 6= d)
S3, D8 M2(Q)
D12, C6 × S3

SG[16, 6] M2(Q(i))
SG[16, 13]
C4 × S3, M2(Q)
SG[32, 11] M2(Q(i))
SG[16, 8] M2(Q)

M2(Q(
√
−2))

C3 × S3, C3 ×D8 M2(Q)
SG[24, 8], SG[72, 30] M2(Q(

√
−3))

C3 ×Q8 H(Q) M2(Q(
√
−3))

SG[36, 6]
(
−1,−3

Q

)
M2(Q)

M2(Q(
√
−3))

SG[32, 8], SG[32, 44] M2(Q)
SG[64, 137] M2(H(Q))
SG[32, 50], M2(H(Q))

M2(Q)

SG[48, 18] H(Q(
√

2)) M2(Q(
√
−3))

M2

(
−1,−3

Q

)
M2(Q)

SG[48, 39] M2(Q(i))

M2

(
−1,−3

Q

)
Table 4. The non-commutative simple components of the groups ap-
pearing in Proposition 4.1 classified by whether they are totally definite
quaternion, exceptional of type 1 and exceptional of type 2.

ring of S-integers in k, for some non-empty, finite set S of places k, containing all the
archimedean places. An S-arithmetic group Γ is a group commensurable with G(O).

Define the congruence topology by taking the subgroups

Γ(α) = {g ∈ G(O) ∩ Γ} | g ≡ 1(mod α)}
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corresponding to non-zero ideals α of O(S) as basis of neighbourhoods of the identity.

The completion Γ̃ of Γ with respect to this topology is the congruence completion.

The congruence kernel C = C(Γ) is the kernel of the natural epimorphism Γ̂ −→ Γ̃.

The Congruence Subgroup Problem (in modern understanding): Compute
the congruence kernel C.

The classical congruence subgroup problem asked whether the congruence kernel is
trivial; however all consequences of this hold also if the congurence kernel is finite. One
says that Γ has the Congruence Subgroup Property (CSP) if the congruence kernel is
finite. J.-P. Serre [42] made the following

Conjecture. Let S be a finite set of valuations of k that contains all
archimedean valuations if k is a number field and is nonempty if k has posi-
tive characteristic. If the S-rank rkSG :=

∑
v∈S rkkvG ≥ 2 (where rkkv(G)

is the dimension of a maximal kv-split tori in G(kv)) and rkkvG > 0 for all
non-archimedean v ∈ S then the congruence kernel is finite (equivalently,
central), i.e. CSP holds, and if rkSG = 1 then the congruence kernel is
infinite, i.e. CSP does not hold.

Note that arithmetic lattices satisfy the Margulis Normal Subgroup Theorem exactly
when rkSG > 1 , i.e. when Γ has conjecturally the Congruence Subgroup Property.

Suppose now that Γ is the group of units with reduced norm 1 in an order of A. If
A is not exceptional then Γ has the Congruence Subgroup Property. If A is exceptional
of type (2) then Γ does not have the Congruence Subgroup Property . However if A is
exceptional of type (1) then the Congruence Subgroup Property for Γ is unknown.

We can deduce now from Theorem 1.5 the following statement about the congruence
kernel of unit groups U(ZG) of a group ring ZG of a finite group whose rational algebra
does not have exceptional components ot type (1). We observe that the congruence kernel

in this case is just the kernel of the natural homomorphism Û(ZG) −→ U(ẐG).

We denote by vcd(Γ) the virtual cohomological dimension of the group Γ.

Theorem 5.1. Let G be a finite group such that QG does not have exceptional com-
ponents of type (1) and let C denote the congruence kernel of U(ZG). Then vcd(C) ≤∑

j(vcd(Γi)), where Γj runs via arithmetic lattices of the exceptional components of QG.

Proof. Let QG = ⊕i∈IAi be the decomposition into the simple components. Let Û(ZG)
be the profinite completion of U(ZG). Choose an open subgroup H such that

(1) H =
∏

iHi with Hi being the profinite completion of an arithmetic lattice of the
component Ai,

(2) Hi intersects the (finite) congruence kernel Ci of Γi trivially for each not exceptional
component Ai.

As it was shown in the proof of Theorem 1.5, the group Γj is good for each j such
that Aj is exceptional and hence so is Hj ∩ U(ZG). Moreover, since vcd is stable for
commensurability, vcd(Hi) = vcd(Γi) for each i. Thus vcd(Hj) = vcd(Γj) for each j such
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that Aj is exceptional. Since vcd of a closed subgroup does not exceed vcd of the group,
vcd(Cj) ≤ vcd(Hj). So the result follows from the fact that cohomological dimension of
a direct product is the sum of cohomological dimensions of the factors. �

References

[1] M. Aka, Arithmetic groups with isomorphic finite quotients. J. Algebra 352 (2012) 322–340.
[2] S. A. Amitsur, Finite Subgroups of Division Rings, Trans. Amer. Math. Soc., 80 (2) (1955) 361–386.
[3] N. Bergeron, F. Haglund, D. T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J.

London Math. Soc., (2) 83 (2011) 431–448
[4] O. Bogopolski, E. Ventura, On endomorphisms of torsion-free hyperbolic groups, International Jour-

nal of Algebra and Computation, 21(8) (2011) 1415–1446.
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