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ABSTRACT. We obtain a new classification of the finite metacyclic group in terms of group invariants. We
present an algorithm to compute these invariants, and hence to decide if two given finite metacyclic groups
are isomorphic, and another algorithm which computes all the metacyclic groups of a given order. A GAP
implementation of these algorithms is given.

1. Introduction

Classifying groups is a fundamental problem in group theory. Unfortunately it is a task which seems out
of reach except for restricted families of groups. One of the classes which have received much attention is
that of finite metacyclic groups. It is well known that every finite metacyclic group has a presentation of the
following form

Gmn,st = <a,b |a™ =1,b" = a®,ab = at>

for natural numbers m, n, s, t satisfying s(t —1) =t" —1 =0 mod m. However, the parameters m,n, s and ¢
are not invariants of the group. Traditionally the authors dealing with the classification of finite metacyclic
group select distinguished values of m,n,s and ¢ so that each isomorphism class is described by a unique
election of the parameters (see [Zas99, Hal59, Bey72, Kin73, Lie96, Lie94, NX88, REd89, Lin71, Sim94]). This
approach was culminated by C.E. Hempel who presented a classification of all the finite metacyclic groups
in [Hem00]. However it is not clear how to use this classification to describe the distinguished parameters
identifying a given metacyclic group and how those distinguished parameters are connected with group
invariants.

The aim of this paper is to present an alternative classification of the finite metacyclic using a slightly
different approach in terms of group invariants which allows an easy implementation. Namely, we associate
to every finite metacyclic group G a 4-tuple MCINV(G) = (mg,nag, sa, Ag) where mg,ng and sg play
the role of m,n and s in the presentation above and Ag is a cyclic subgroup of units modulo a divisor of
me. Our main result consists in proving that MCINV(G) is an invariant of the group G which determines
G up to isomorphism, i.e. if G and H are two finite metacyclic groups then they are isomorphic if and
only if MCINV(G) = MCINV(H) (Theorem A). Moreover, we describe in Theorem B the possible values
(m,n,s,A) of MCINV(G) and for such value we show how to find an integer ¢ such that MCINV (G, p.5.t) =
(m,n,s,A) (Theorem C). This allows a computer implementation of the following function: one which
computes MCINV(G) for any given finite metacyclic group, and hence of another function which decide
whether two metacyclic groups are isomorphic, and another one which computes all the metacyclic subgroups
of a given order.

To define MCINV(G) we need to introduce some notation. First of all, we adopt the convention that 0 is
not a natural number, so N denotes the set of positive integers. Moreover by a prime we mean a prime in
N. If m € N, p is a prime, 7 is a set of primes and A a finite abelian group then we denote
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2 A CLASSIFICATION OF METACYCLIC GROUPS BY GROUP INVARIANTS

m(m) = set of primes dividing m,
U, = group of units of the ring Z/mZ,
mp, = maximum power of p dividing m,
My = HpEw Mp,
A, = Hall nm-subgroup of A,
A, = Hall 7’-subgroup of A.

If t € Z with ged(t,m) = 1 then [t],,, denotes the element of U,, represented by ¢ and (t),, denotes the
subgroup of U,, generated by [t],,. If ¢ | m then Res, : Uy, — U, denotes the natural map, i.e. Resy([t]n) =
it

Let T be a cyclic subgroup of U,,. Then we define [T'] = (r, €, 0)

r = greatest divisor of m such that Res,, (T) =1 and Res,,(T) C (-1),,;
—1, if Res,,(T) # 1,

€ =
1, otherwise.

o = |Resy, (T,)|, with v =7(m)\ n(r).

If moreover, n,s € N then we denote
[T,n,s] =m, H my,
pem(r)
with m;, defined as follows:

5p0
e p—1 !/ : pr~p .
if € = 1 then m,, = min (mp, 0pTp, Max (rp, sp,rp—n )) ;
P

(1.1) ro,  if either 0o < 2 or ma < 2r9;

ma

if e=—1then mj = ¢ 22 if 4 <oy < ng,4ry <m, and if sy < nory then so = my < nagra;

meo, otherwise.
Let A be a cyclic group of order m. Then the map o4 : U,, — Aut(A) associating [r],, with the map
a+— a”, is a group isomorphism. If moreover A is a normal subgroup of a group G then we define
To(A) = o3 (I (A)),
where Inng(A) is formed by the restriction to A of the inner automorphisms of G. We introduce notation
for the entries of T(A) by setting
(ra(A),ec(A), 0c(A4)) = [Tc(A)].

Definition 1.1. Let G be a group. A metacyclic kernel of G is a normal subgroup A of G such that A and
G/A are cyclic. A metacyclic factorization of a group G is an expression G = AB where A is a normal
cyclic subgroup of G and B is a cyclic subgroup of G.

A minimal kernel of G is a kernel of G of minimal order.

A metacyclic factorization G = AB is said to be minimal in G if (|A|,rc(A),[G : B]) is minimal in the
lezicographical order. In that case we denote mg = |A|, ng =[G : 4], s¢ =[G : B] and r¢ = rg(A).

Clearly a group is metacyclic if and only if it has metacyclic kernel if and only if it has a metacyclic
factorization. Sometimes we abbreviate metacyclic kernel of G or metacyclic factorization of G and we
simply say kernel of G or factorization of G.

If G = AB is a metacyclic factorization of G then we denote

A(AB) = Resj1,,,5(T), with T =Tg(A), n=[G:A] and s=[G:B].

We will prove that A(AB) is constant for all the minimal metacyclic factorizations (Corollary 3.7). This
allows to define the desired invariant:

MCINV(G) = (JA|,[G : A], |G : B], A(AB)), with G = AB minimal factorization of G.
Our first result states that MCINV(G) determines G up to isomorphisms, formally:
Theorem A. Two finite metacyclic groups G and H are isomorphic if and only if MCINV(G) = MCINV (H).

Our next result describes the values realized as MCINV(G) with G a finite metacyclic group.
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Theorem B. Let m,n,s € N and let A be a cyclic subgroup of U,y with m’ | m. Let [A] = [r,¢e,0] and
v=m(m)\ 7(r). Then the following conditions are equivalent:
(1) (m,n,s, A) = MCINV(G) for some finite metacyclic group G.
(2) (a) s divides m, |A| divides n and m, = s, =m),.
(b) (1.1) holds for every p € m(r).
(c) If e = —1 then T—; < ng, mg < 289 and sg # nors. If moreover 4 | n, 8 | m and o2 < ny then
T2 < S9.
(d) For every p € m(r) with e?~! =1, we have T—: <sp < ny and if rp > s, then ny < 5,0p;

Our last result shows how to construct a metacyclic group G with given MCINV(G): If m,n, s € N with
s | m then we define the following subgroup of U,,:

Uy ={tlm :m|s(t—1), and t"=1 mod m}.
If T is a cyclic subgroup of U»* generated by [t],, then we denote
Gmmn,sT =Gmmst ={a,b:a™ =10" = a®,a® =a'}.
It is easy to see that the isomorphism type of this group is independent of the election of the generator [t],

of T' (Lemma 2.2.(5)). Moreover, the assumption 7' C U® warranties that |a| = m, |G s, 7| = mn and

_mn
[b] = =2

Remark 1.2. Suppose that m,n,s and A < U, satisfy the conditions of statement (2) in Theorem B and
[A] = (r,€,0). Then Resp (A) = (er=t+rp), , for every p € m(r) and hence there is an integer t' such

that A = (t'),,, and ' = ' +r, mod m/, for every p € n(r). Using the Chinese Remainder Theorem
we can select an integer t such that t = t' mod m’ and t = e’~! + r, mod m, for every p € w(r) and
let T = (t),,- Then T C U}°, Res, (T) = A and [T] = [A]. Then the following theorem ensures that
MCINV(Gn,s,7) = (Mmym, s, A).

Theorem C. Let m,n,s € N and let A be a cyclic subgroup of Uy, with m’ | m. Suppose that they satisfy the
conditions of (2) in Theorem B and let T be a cyclic subgroup of UlL® such that [T] = [A] and Res,, (T) = A.
Then (m,n,s,A) = MCINV(G,, n.s.7)-

For implementation it is convenient to replace the fourth entry of MCINV(G) by a distinguished integer
te so that G = Gigne,sate and G = H if and only if (mg,ng, sg,ta) = (mu,ny, sy, ty). We select
te satisfying the conditions of Remark 1.2. In particular, [tg|m, is uniquely determined by the condition
t = e~ +r, modm, for every p € m(r). However there is not any natural election of [tg],, , and we
simply take the minimum possible value. More precisely, if (m,n, s, A) = MCINV(G), (r,€,0) = [A] and m/
is given by (1.1) then define

t¢ =min{t > 0: Res,((t),,) =A and t=¢""'+r, modm, for every p € m(r)}.

We call (mg, ng, sa,ta) the list of metacyclic invariants of G. Clearly if H is another metacyclic group then
G = H if and only if G and H have the same metacyclic invariants. Moreover, by Theorem C, if (m,n, s,t)
is the list of metacyclic invariants of G then G = G, », 5 +-

We outline the contains of the paper: In Section 2 we introduce the general notation, not mentioned in
this introduction, and present some preliminary technical results. In Section 3 we prove several lemmas on
metacyclic factorizations aiming to an intrinsic description of when a metacyclic factorization is minimal.
It includes an algorithm to obtain a minimal metacyclic factorization from an arbitrary one. This section
concludes with Theorem 3.6 which is the keystone to prove Theorem A, Theorem B and Theorem C in
Section 4. In Section 5 we introduce an algorithm to compute the metacyclic invariants of a given metacyclic
group and use this to decide if two metacyclic groups are isomorphic, and another algorithm to construct
all the metacyclic groups of a given order. We present also implementations in GAP [GAP12] of these
algorithms.

2. Notation and preliminaries

By default all the groups in this paper are finite. We use standard notation for a group G: Z(G) = center
of G, G’ = commutator subgroup of G, Aut(G) = group of automorphisms of G. If g, h € G then |g| = order
of g, g" = h='gh, [g,h] = g~'g". If 7 is a set of primes then g, and g,/ denote the 7-part and 7'-part of g,
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respectively. When p is a prime we rather write g, and g,/ than g,y and gy,)/, respectively. Similarly, if G
is a finite abelian group then G, and G, denote the p-part of G and the p’-part of G, respectively.

Let G be a metacyclic group. Observe that A is a kernel of G if and only if G has a metacyclic factorization
of the form G = AB. In that case, if

=|A], n=[G:A4], s=[G:B] and T =Tg(A4)=(1),,,
then s | m, |B| = n'2, T'C U}»* and A and B have generators a and b, respectively, such that b" = a* and
a® =a'. Thus G = G5 -
If p is a prime then v, denotes the p-adic valuation on the integers.

Let a € Z and m € N. If ged(a, m) = 1 then o,,(a) denotes the order of [a],, i.e. 0p(a) = min{n € N :
a™ =1 mod m}. If a # 0 then we denote

S(a|m)= Za_{ , ifa:.l;

a—l , otherwise.

This notation occurs in the following statement where g and h are elements of a group:

(2.1) If g" = ¢g® then (hg)™ = h™gS@m),
The following lemma collects some useful properties of the operator S (— | —) which will be used through-
out.

Lemma 2.1. Let p, R,m € N with p prime and suppose that R =1 mod p.

(1) Suppose that either p#2 or p=2 and R =1 mod 4. Then

(a) vp(R™ —1) = vy(R = 1) 4+ vp(m) and vy(S (R | m)) = vp(m).

(b) Opm (R) — pmax(O,mfvp(Rfl)) .

(¢) Ifa=vy(R—1) <m then (R), = {[1+yp"Tym : 0 <y < p"—e}.
(2) Suppose that R = —1 mod 4. Then

R+1 if 2 ;
(a) ’Ug(Rm—l): vo(R+1) 4+ va(m), if ‘m'a
1, otherwise;

and vs(S (R | m)) = va(R+ 1) +wva(m) —1, if2|m;
0, otherwise;
1, ifm <1,
(b) O2m (R) - {Qmax(l,m—vz(R-‘rl)), otherwise

{UQ(R +1), if2tm;
1,

otherwise.

(c) va(R™ +1) =

Proof. (1a) The first equality can be easily proven by induction on m. Then the second follows from
R™—1=(R-—1)S(R|m).

(1b) is a direct consequence of (1a).

(1c) By (1a) we have (R) .. C {[1+yp®]ym : 0 <y <p™~*} and by (1b) the first set has p™~* elements.
As the second one has the same cardinality, equality hOldb

(2a) Suppose that R = —1 mod 4. If 2 {m then = —1 mod 4 and hence va(R™ ) =1. AsR*=1
mod 4, if 2 | m then, by (1a) we have vo(R™—1) = vg((Rz) 2 —1) = va(R?—1)+v2 (Z) = va(R+1) 4+ v2(m).
This proves the first part of (2a). Then the second part follows from R™ —1 = (R —1)S (R | m).

(2b) follows easily from (2a).

(2¢) Since R is odd, both R™ — 1 and R™ + 1 and are even and exactly one of vy (R™ — 1) and vy (R™ + 1)
equals 1. Thus, from (2a) we deduce that if 2 | m then vy(R™ 4 1) = 1. Suppose otherwise that m is
odd and greater than 2. Then vg(R™ ! — 1) = va(R + 1) + va(m — 1) > v2(R + 1), so that vo(R™ + 1) =
va(R(R™ ' —1+41)+1) =v(R+1+R(R™ ' —1)) =va(R+1).

]

The following lemma follows by straightforward arguments.

Lemma 2.2. Let m,n,s € N, let T be a cyclic subgroup of Up,, and denote (r,e,0) = [T], m' = [T,n, s] and
A = Resy (T).
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(1) If T = (t),, then |T| = op(t), r2r = ged(mar,t — 1), ro = max(ged(me,t — 1), ged(ma,t + 1)) =
ged(ma,t —€) and 0 = oy, (t),r with v =n(m) \ w(r).
(2) r|m' | m and 7(m) = w(m').

(3) [T] = [A].
(4) For every p € m(r) we have Resy,, (T) = (e*~* + Tp>mp and
2, ifp=2,e=—1 and ro = mo;
Resy,, (T,)] =
| ebm”( vl {T:’, otherwise.
(5) If s | m and T C U then My | 70, My | 78, 0| Npmp\r(r) and if € = —1 then mgo € {s2,252}.

If moreover T = (t), = (u),, then there is a k € N with gcd(k,|T|) =1 and a — a*, b+ b* defines
an isomorphism G n.st — Gmon.su-

Definition 2.3. Given m,n,s € N with s | m and a cyclic subgroup of Uy, we say that T is (n, s)-canonical
if T CUMS and if (r,e,0) = [T] then the following conditions are satisfied:

(Can-) If e = —1 then sy # rong. If moreover, ma > 8, no > 4, 0 < ng then ry < so.

(Can+) For every p € m with €' =1 we have s, | n and ry, | s or syo, { n.

3. Metacyclic factorizations

In this section G is a finite metacyclic group. Moreover we fix the following notation:

7w = set of prime divisors of |G| such that G has a normal Hall p’-subgroup,
= w(|G])\,
oc = |Inng(G')|r-

In our first lemma we show that 7, 7’ and og are determined by any kernel of G.

Lemma 3.1. Let G = AB be a metacyclic factorization and let m = |A|, s = [G : A], r = rq(4) and
0=o0¢(A). Then
(1) For every set of primes pu, A, B, is a Hall p-subgroup of G.
(2) per if and only if G'\ Z(G) has an element of order p if and only if A\ Z(G) has an element of
order p.
(3) G =Ap and Ay N B = 1.
(4) @ =w(m)\ w(r), 8 = myp and 0o = og.

(5) G=Ar x (B,r/ x I ) In particular (B, Ap) =1 for every p € 7.

;D€7'r

Proof. (1) As A is normal in G, AuBu is a p-subgroup of G and A,/ B, is a p/-subgroup of G. Moreover
G =AB = A,B,A, B, and hence [G : A,B,] = |A,B,/|. Thus A, B, is a Hall p-subgroup of G.

(2) As G/A is abelian, G’ C A. Let p € 7(|G|). If p { m then AB, is a normal Hall p’-subgroup of G
and hence p € w. Suppose otherwise that p | m and let C' be the unique subgroup of order p in A. Since C
is normal in G, it follows that G’ \ Z(G) has an element of order p if and only if A\ Z(G) has an element
of order p if and only if C € Z(G). Since Aut(C) is cyclic of order p — 1, if p € 7 and N is a normal Hall
p’-subgroup of G then G = N x P with P a Sylow p-subgroup of G containing C' and as [P, C] = 1 it follows
that [G,C] C [N,C] € NNC =1 and hence C C Z(G). Conversely, if C C Z(G) then [A,, Ay By] =1
because the kernel of the restriction homomorphism Aut(A4,) — Aut(C) is a p-group. As A, B normalizes
A, B,y it follows that the latter is a normal Hall p’-subgroup of G and hence p € =.

(3) Let p € ', c an element of order p in A and a a generator of A. Since |Aut({(c))| =p—1and c ¢ Z(G),
we have that af) = a}’j for some integer k such that ged(k, p) = 1. Moreover, k — 1 is coprime with p because
1 # [¢,b] = ¢*'. Then A, = (ak~') C G’ and hence 4, = G’,. Moreover, if g € A, N B, \ {1} then
l[9,B] =1 and ¢ € (g), yielding a contradiction. Thus A, N B, = 1. Since this is true for each p € 7', we
have Ay = G and Ay N B = 1.

( ) is a direct consequence of (2) and (3).

(5) By (1) and (3), Az By = Ay x By is the unique Hall 7’-subgroup of G and hence G = (A, x BL,) x
(AxBy). Moreover, if p € m and c is an element of order p in A, then ¢ € Z(G) by (2). This implies that
[Bp, Ap] = because the kernel of Res, : Aut(A4,) — Aut({c >) is a p-group. Then [B,/,AzB;] = 1 and

ArBr =[],¢ O
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Next lemma shows that €5 is determined by any minimal kernel of G.
Lemma 3.2. If A is a minimal kernel of G then eg = eg(A).
Proof. Let m = mg = |A|, e = eg(A4) and r = rg(A). If my <2 then e =1 = e¢. Otherwise 4 | r5 and
(a™), ife=1,;

G2{<a2>, if e = —1.

Then
=2, ife=—1;
and hence e = —1 if and only if mg = 2|G’2| > 2 if and only if e¢ = —1. O
Let

Rg = {rg(A) : A is a minimal kernel of G}.
Next lemma shows that |Rg| < 2 and in most cases |Rg| = 1.

Lemma 3.3. Let m = mg, n = ng and o = og. Then the following statements are equivalent:

(1) |Rg| > 1.

(2) na >4, mo>8, eqg = —1, 03 <ny and Rg = {§,7r} for some r with ry = my.

(3) na >4, my > 8, eg = —1, 02 < na, ro € {52, ma} for somer € Rg and [G : Bly = "3 for some
metacyclic factorization G = AB with m = |A|.

(4) n2 >4, my > 8, eg = —1, 02 < ng, ro € {52, ma} for somer € Rg and [G : Bly = "2 for every

metacyclic factorization G = AB with m = |A|.
Furthermore, suppose that G = AB is a metacyclic factorization satisfying the conditions of (3) and let

nmey

a be a generator of A and b be a generator of B and s = [G : B]. Let C = <b2522’a>. Then G = CB is
another metacyclic factorization with |C| = m and rq(C) # rg(A).

Proof. Let € = €g, 0 = 0g, R = R¢ and for every p € w let R, = {r, : 7 € R}. Fix a minimal kernel A of G
and let r = rg(A).

Let p € m. If ! = 1 then |G')| = T—: Thus in this case |R,| = 1. Therefore ro is constant for
every r € I and hence |R| = |Ra|. Moreover, if € = 1 then G5 = 72 and hence Ry = {‘g—é‘} In this
case none of the conditions (1)-(4) hold. Otherwise, 4 | rg(A)2 | ma. Thus, if ms < 8 then rg(4): =4
for every minimal kernel A of G and hence |R| = |Rz| = 1, so that again none of the conditions (1)-(4)
hold. Thus in the remainder of the proof we assume that ¢ = —1 and 8 < ms. Then G’ = A2 and hence
(—1+ Tg(A)2>% = Resmz (Tg(A)) = 05,12 (Inng(G'2)), which is independent of A. This shows that if Ry
contains an element smaller than “52 then it only has one element and hence again none of the conditions
(1)-(4) hold. So in the remainder of the proof we assume that Ry C {"2,ma}.

Suppose that o = nz. Then, by Lemma 3.1.(4), Cg(G'r)2 = Az, and hence (—1+17g(A)2),,, =
Resm, (Ta(Ca(G'r)2)) is independent of A. Therefore, in this case |Ra| = 1, so that |R| = 1. So again in
this case none of the conditions (1)-(4) hold and in the remainder of the proof we also assume that oy < ns.

Suppose that no < 4. Then none of the condition (2)-(4) holds and as ¢ = —1, we have ny = 2. By means
of contradiction suppose that (1) holds. By the previous paragraph Ry = {2, m2} and hence G has two
minimal kernels A and C' with rg(A4)2 = mg and rg(C)2 = 2. If G = AB and G = CD are metacyclic
factorization of G then Ay By and Co Do are Sylow 2-subgroups of G and hence they are isomorphic. However,

by Lemma 2.2.(5), [A2B> : By] is either my or “2. In the first case Ay By is dihedral and in the second case

Ay By is quaternionic. This yields a contradiction because from rg(C)s = 752 it follows that Cy D5 is neither
dihedral nor quaternionic.
Thus in the remainder we assume that mo > 8, no >4, 00 < ng, e = —1 and Ry C {%Jng}. Moreover,

by the above arguments we have that R C {%,r} for some r with 73 = my. Thus (1) and (2) are equivalent.
(4) implies (3) is clear.
(3) implies (2). Let G = AB be a metacyclic factorization of G satisfying the conditions of (3). Let

s =|G: B] and r = rg(A). Select generators a of A and b of B and let z = bﬁ7 ¢=za and C = {c). We
will prove that if G = C'B is another metacyclic factorization with |C| = m and r¢(C) # r, so that (2) holds.
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Indeed, since 0z < ng, we have [z, ar/] = 1. Moreover, [z,,a,] = 1 for every p € m. If moreover, p # 2 then
[2p, ap] = 1 because [b",a] = 1. Finally, 7o € {%2,mo} and hence 0y, (—1472) = 2. As4 | n and ab? = ay 't
it follows that [22,as] = 1. This shows that z € Z(G). As s =[G : B] and [G : A] = n we have b" = a*® for

. . . 24 s 22! m m .
some integer = coprime with m. Then ¢ = a 2 = g¥tTsamy = 2105 = ¢2+% As 8 | m it follows that

|C| = m. Suppose that a® = a’. Thent+1=r; mod my. Let r’ € N with 75, = ros and {ry, 75} = {%2,ma}
and let ¢’ be an integer such that ' =¢ mod my and t/ = —1+ 7, mod ms. As 8 | m we have t’' =t = —1
mod 4 and hence ¢ = 1 + 2y for some odd integer y. Then ¢! = zz!' ~lat = 222a" = za? +¥%. Moreover,
t'+yZ=t'=t mod my and t’' + y2 = -1+ 715+ %2 = —1+ry =¢ mod my. Therefore ¢t = zat = .
This shows that C' is a cyclic normal subgroup of G and clearly G = CB is a metacyclic factorization
satisfying the desired condition.

Before proving (1) implies (4) we prove that if G = AB = C'D are metacyclic factorizations with |A| =
|B| = m then [G : Bl = [G : D]s. The assumption ¢ = —1 implies that G’y = A% = C%2. As AyB, and
C3 D5 are Sylow 2-groups of G we may assume that they are equal and hence if Ay = (a) and B = (b) we
may write ¢ = b'a’ and d = b*a'. Since ¢ € C? = A? we have %2 | i and as 4 | n, necessarily 2 | i and
hence 2 { k. Then, using that r¢(A),rg(C) € {2, my} we have that d* = b** or d* = b2*q!"2* | In both
cases d* = b* and hence D* = B%. As 4 | n it follows that Ay N By = By? = Dy? = Cy N Dy. Therefore,
[G : B]Q = [AQBQ : BQ] = [AQ,AQ N BQ] = [CQ : 02 N DQ] = [G,D]Q, as desired.

(1) implies (4). Suppose that |R| > 1. By the assumptions and the previous arguments we know that
the only condition from (4) which is not clear is that if G = AB is a metacyclic factorization with m = |A|

and s = [G : B] then s, = %2. So suppose that s; = mso. Since |R| > 1, there is a second metacyclic
factorization G = CD with |C| = m and {rg(A)2,7¢(C)2} = {52, m2}. By the previous paragraph
[G : D]y = [G : Bl = 1. By symmetry we may assume that 7g(A)2 = my and rg(C) = %2. As above

we may assume that AsBy = CyDy and if Ay = (a), By = (b), Co = (c) and Dy = (d) then a® = a7},
d =T Gy = A2 =C2 Ay # Cy and Ay N By = Oy N Dy = 1. Write ¢ = b'a’ and d = b¥a! with
i,j,k,1 € N. Since ¢ € A we have that % | i and as 4 | na, we have that k is odd and [b*,a] = 1. Thus
b? = c?a=% € Ay N By = 1. Then ¢ = a¥ and as C? = A2, necessarily j is odd. However, from 6% = 1,
[b',a] = 1 and 8 | m we have bgag_H%)j = bé_1+%)iaé_1+%)j = cQ_H% = 4 = bha,? and hence 2| j, a
contradiction. (]

In our next result we show a way to decide if a factorization of G is minimal and we prove that the
following algorithm transforms a metacyclic factorization of G into a minimal one.

Algorithm 1. INPUT: A metacyclic factorization G = AB of a finite group G.
OUTPUT: a,b € G with G = (a) (b) a minimal metacyclic factorization of G.
(1) m:=|A|, n:=[G: 4], s:=[G: B,
(2) a:= some generator of A, b:= some generator of B, and y € N with b = a¥.
(8) r:=rg(A), e :=eg(A) and 0o = og(A).
(4) for p € w(r) with #=1 =1
(a) if sptn then b:=ba, and s := spn,.

(b) if rp1s, spop | nand t € N satisfy aff’ = a},, compute v € N satisfying S (t% | sp) =r—y

n

. pep T — m — '
mod my, and set a := by” aya,, m:= Sprs M= N, and

(T 6) = (47&2,’71)’ ng | m,Sp == 2, Cmd ro = m’
, (rpsp, 1),  otherwise.

(5) Ife=—1,4|n, 8| m, oo <ng and r2 1 s then a:=b*2> a and r :=ro sy
(6) If e = —1 and sy = rong then b := bas and s :=
(7) Return (a,b).

Es
R

Proposition 3.4. Let G = AB be a metacyclic factorization and let m = |A|, n =[G : A], s =[G : B] and
T =Tg(A). Then G = AB is minimal as metacyclic factorization of G if and only if T is (n, s)-canonical.

Furthermore, if the input of Algorithm 1 is a metacyclic factorization of G and its output is (a,b) then
G = (a) (b) is a minimal metacyclic factorization of G.
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Proof. Let (r,€,0) = [Tg(A)]. By Lemma 3.1, 7’ = «(m) \ m(r). Fix y,t € N with b" = a¥ and a’® = a'.
Then s = ged(t,m), ged(t,m) = 1, ror = ged(mar,t — 1) and ro = ged(mae,t — €). For every prime p let
G, = A,B,.

Claim 1. If condition (Can+) holds then A is a minimal kernel of G.

Suppose that condition (Can+) holds and let C be kernel of G. We want to prove that |C| > m and for
that it is enough to show that |C),| > m,, for every prime p. This is obvious if m, = 1, and it is a consequence
of Lemma 3.1.(3), if p € 7’. So we suppose that p € 7 and m,, # 1. Hence p | r

Suppose first that €~! = —1. Then p = 2 and A% = G5 C Cy. However Cy € A% because Ga/A3 is not
cyclic. Therefore |Cy| > 2|A3| = ma.

Suppose otherwise that e#~* = 1. Then Gj = A;” and |G/)| = T—: Assume that r, | s,. Then
Gp/ Gy = (Ap/Gy) X (BpG'p/G'p) and 1y = |A;D/G p| <np = [BpG'p: G'pl. As (Gp/G'p)/(Cp/G'p) = Gp/Cy
is cyclic, necessarily r, | [Cp : G’p] and hence m,, | |C,], as desmed. Assume otherwise that r, J( sp. By
condition (Can+) we have s, | T and s,0, f ny,. In particular p | 0,. By Lemma 3.1.(3), Crv = A and
thence C), C Cg, (Ar), = A, B,”. Using again that G,/C, is cychc and p | op, we must have C), = <b ap>

for x € N with o, | z and * < n. Let R € N such that ap = Ilf. Then R satisfies the hypothesis

of Lemma 2.1.(2c) and hence v, (S (R | ﬁ)) = vp(n) — vp(z) < vp(n) — vp(0) < vp(s) = vp(yzy) and

YT +S (R\ Z—;)
P

n

therefore v, (yxp/ +8 <R| %)) = vp(n) — vp(x). Then |Cp| = Z—z|(b§ap)£| = Z—i a

= Myp.

This finishes the proof of Claim 1.

Claim 2. If T¢(A) is (n, s)-canonical then for every metacyclic factorization G = CD with |C| = m one
has r¢(C) > r and |D| < |B].

If r¢(C) < r then, by Lemma 3.3, mo > 8, ny > 4, e = —1, 0o < na, 71g(C)2 = 5* = 59 and 73 = my, in
contradiction with the second part of condition (Can—). Thus rg(C) > r.

To prove that |D| < |B| we show that |D,| < |B,| for each prime p. This is clear if p f m and a consequence
of Lemma 3.1.(4) if p € #’. Otherwise p | r. Since both G}, and C},B,, are Sylow p-subgroups of G we may
assume that G, = C,D,,.

Assume first that €?~' = 1. Then by assumption s, | n,. Let d = byay be a generator of D), and
let R € N such that azz = af. The assumption e?~! = 1 implies that R satisfies the hypothesis of
Lemma 2.1.(1a) and hence m,, | S (R | my, =2 ) and from (2.1) we deduce that d = ais(u”p) ISy =1
and hence |D,| < ™22 = |b,|. Suppose otherwise that e’~' = —1, i.e. p = 2 and ¢ = —1. Then

C2 =@y = Ay and 02 NDy C Z(Gy) N Cy = Z(Ga) N CE = Z(Gy)A = A2 and hence |Cy N Dy| < 2.
Thus |D2| = [DQ : Oy ﬁDQ] |CQ ﬁD2| = [G2 : Cg] ‘02 ﬂD2| S {’RQ,Q’/ZQ}. Similarly, |Bg| S {TZQ,2TI,2}. If
| B2| = 2ng then |Dy| divides |Bz| as desired. Suppose otherwise that |Bz| = na. Then mg = s and hence
my divides 22, by the hypothesis (Can—) and Lemma 2.2.(5). If Dy C (a,b3) then Cy = (bya3) for some
integer x and hence ny = 2 because C2 = <a2> Then Dy C {(as2) so that Do is normal in G5 and hence
(a3) = C3 =[Dy,C5] CConN Dy C <a2 > C (a3). Then my = 4 and G5 is dihedral of order 8. Then every
metacyclic factorization of Gy is of the form (ag) (c) with |c| = 2. Thus |Dy| = 2 = |be], as Wanted Assume
otherwise that Dy Z <a2, b§> Then Dy = (byal) for some integer = and let R € N such that a2 = alf. The

rang

hypothesis € = —1 implies that R satisfies the hypothesis of Lemma 2.1.(2a). Since my divides 7272, we get

v2(S (R | n2)) = va(r2) + va(na) — 1 > va(ms) and hence (boa})™2 = a§8<71+r2|n2) = 1. Then |Ds3| = na, as
desired. This finishes the proof of Claim 2.

The necessary part in the first statement of the proposition follows from claims 1 and 2.

Claim 3. If p| 7, ' =1 and s, { n, then [G : ba,] = spyn, < s.

First of all n = |ba, A| and hence n divides |ba,|. Using (2.1) we have (ba,)" = a;, Lal TS and v ([G :
(bap)]) = vp(S (t | n)) = vp(n) < vp(s) = vp(y), by Lemma 2.1.(1a) and the assumption. Thus |ba,| = n—2—
and hence [G : ba,] = spny,. This finishes the proof of Claim 3.

S /’ILp
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By Claim 3, if the first part of (Can+) fails then G = AB is not minimal because G = A (ba,) is a
factorization with [G : b] > [G : (bap)]. Moreover, the factorization G = A (bay,) satisfies the first part of
condition (Can+) and hence after step (4a) of Algorithm 1, the factorization G = (a) (b) satisfies the first
part of (Can+) for the prime p.

Claim 4. Suppose that p | 7, =1 =1, s, | n, r, 1 s and 5,0, | n. Let R € N with aff’p = a®. Then
there is an integer x such that r —y = ¢S (R | sp) mod my,. This justify the existence of x in step (4)

of Algorithm 1. Let ¢ = b;” apay and C = (c). Then G = OB is a metacyclic factorization of G' with
|C| = m22 < |A|. Moreover,
P

ma .

(4ror, —1), if 8 |m,s, =2, and ry = 52;

(rpsp,1), otherwise.

(ra(C), ec(C)) = {

n

The assumption s,0, | n, implies that o, | & and hence [b;7 ,an] = 1. As also [bp, am\(p}] = 1 we

deduce that [bﬁ,ap/] = 1. On the other hand, since 7, { sp, vp(y) = vp(s) < vp(r) and therefore v,(r —
y) = vp(s) = vp(S(t] sp)), by Lemma 2.1.(1a). Therefore there is an integer x coprime with p such that

naspawS(Rlsp) — as,,ay-l-:zS(R\sp) — asz/oar' Then

r—y=aS(R|sp) modm,. Using (2.1) we have c** = bpa Jap o 0p o Op
Gy Clay)CCand G = <a;> C C. Thus G’ C C and hence G = CB is a metacyclic factorization of G

with [C| = splay||ay| = mf—: <m=|A]l. As Cp = Ay, we have rg(C)y = rg(A)y =rp. I eg(C)P~H =1

then T—: = |G| = rc‘;?g‘)p = rp:ZoiCp)p and hence in this case rg(C) = r,s,. Otherwise, i.e. if p = 2 and
€c(C) = —1 then 2|Cs| < 53 < [Cof and 4 < rg(C)2 < [Cof = 722 = 2|G5| = 2:;2 and hence sy = 2,
|Ca| = 4 = rg(C)2 and rp = 2. Conversely, if s = 2 and ro = %2 then [C3| = 4 and hence rg(C)2 = 4.
Moreover, as Go is not commutative then e(C') = —1. This finishes the proof of Claim 4.

Claim 4 shows that if the first part of (Can+) holds but the second one fails then G = AB is not
minimal. It furthermore the parameters associated to the factorization G = CB, ie. |C|,[G : C],[G :
B],rq(C),ec(C),06(C), satisty condition (Can+) for the prime p and hence, after step (4b) of Algorithm 1,
the current factorization G = (a) (b) satisfies this condition. Moreover, if e¢(C) = 1 then r,(C) = s, < n,
and condition (C+) holds for the prime p. Thus when the algorithm finishes the loop in step (4), the
metacyclic factorization satisfies condition (Can+) and hence the current value of (a) is a minimal kernel of
G by Claim 1.

Observe that the modification of @ and b in steps (4a) and (4b) for some prime p does not affect the
subsequent calculations inside the loop. Indeed, suppose that p and ¢ are two different divisors of r with
=1 = €971 = 1, and the prime p has been considered before the prime ¢ in step (4). This has affected
a and b which have been transformed by first transforming b into d = ba, and then transforming a into
¢ = dpayay = bpay a}ﬁ"’”. In principal we should recalculate the natural number y computed in step (2)
to a new y'. However, as p € m, [by,a,] = [by,a,] = 1 and hence ay = ¢p and b, = dp. Therefore
dg = ¢4 and hence y' =y mod mg. Therefore when in step (4b) for the prime ¢ we compute z satisfying if
r—y=xzS(R|sq) = mod m, we also have r —y' = xS (R | s4) mod my.

By Lemma 3.3, if the second part of condition (Can-) is satisfied then rg(A) = rg. Otherwise, rg(A) >
ra, and hence the factorization G = AB is not minimal, However, after step (5) the factorization G = (a) (b)
satisfy both |a|] = m¢g and r¢({a)) = rg. In the remainder of the algorithm the kernel (a) is not modified
and hence this is going to be valid in the remainder of the algorithm.

Finally suppose that the first part of (Can-) fails, so that p = 2, ¢ = —1 and sy = r9ny. Then 4 | r and
(), = (=1 +72),, . Moreover, by Lemma 2.2.(5), we have that sz € {"5*,ma2} and ma | r2na. Therefore
sg = mg = ran2. Then va(S (¢ | n2)) = va(r) + v2(n) — 1 = vao(m) — 1, by Lemma 2.1.(2a). As in the
proof of Claim 3, we use the metacyclic factorization of G = A (bas). If G = AB is minimal then we have
nl(bag)"| = |baz| < |b| = nla®| = n™. Therefore |(baz)"| < 2. Using (2.1) once more and [bor,az] = 1,
we obtain (bas)" = aya‘;(tlm) = ag,aQTQ. Thus [(baz)"| = 2™ and hence |bap| = 2™* = 2|B|, contradicting
the minimality. Thus G = AB is not minimal. Moreover, the new metacyclic factorization satisfies (Can—)
because, [baz|> = 2|b|2 and hence if 8" = [G : (bag)] then s5 = 52 # my = T2ns. O
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In order to prove that the last entry of MCINV(G) is well defined and prove Theorem A we need one
more lemma which is inspired in Lemmas 5.5 and 5.7 of [Hem00].

Lemma 3.5. Let p be a prime and consider the group P = G, . s.c4r with m and n powers of p, r and s
divisors of m and € € {1, —1} satisfying the following conditions: p | r, m |rn, if 4 | m then 4 | r, if e =1
then m | rs and if e = —1 then 2 | n, 4 | m and m | 2s. Let o be a divisor of n and N = (a,b°). Denote

min(o, 7, max(1, £, 22)), ife=1;

1, ife=—1and ,o|2 orm|2r;

w =
5 ife=—1,4]0<mn,4r | m, and if s # nr then 2s = m < nr;
m otherwise.

o
If y is an integer coprime with p then the following conditions are equivalent:
(1) There are c € N and d € YN such that P = (c,d), |c| = m, d" = ¢* and ¢ = c*7.
(2) y=1 mod w.

Proof. Observe that N is the unique subgroup of G of index o containing a. We will make a wide use of (2.1)
and Lemma 2.1, sometimes without specific mention. We consider separately the cases e =1 and ¢ = —1.

Case 1. Suppose € = 1.

(1) implies (2). Suppose that ¢ and d satisfy the conditions of (1). If w = 1 then obviously (2) holds. So
we may assume that w # 1 and in particular p | o and pr | m. The first implies that N C (a,b?) and the
second that P/ (a?,bP) is not cyclic. Therefore ¢ & (aP,b?) and hence (¢} = (b*¥a) with o | v | n and p t «.
Write d = b¥'a* with y;, 2z € Z. From the assumption d € bY N we have that y; =y mod o and hence y = y;
mod w. Therefore, it suffices to prove that y; =1 mod w. From ¢? = ¢!*7 we have

bzvaz(lf(lJrr)I”)Jr(lJrr)yl _ (b:v'ua)bylaz _ (ba:va)lJrr _ bxvabwvraS((lJrr)I”h)’
Then n | vr and ™" = a®** . Thus
1=+ + (1 +1)" —1=as— +S((1+7)™ |r) mod m.
n

This implies that that r divides zs“", since r divides m. As r is coprime with x, it follows that n divides sv.
Moreover, (1 +7)*” =1 mod rv, by Lemma 2.1.(1a), and hence S (1 +7)*" | r) = r mod rv. As r,v,m
and s are powers of p we deduce that
(I1+7m¥ =14r mod min(m,rv, ﬂ)
n

m

Using Lemma 2.1.(1b) it follows that y; =1 mod min("*,v, 22).
Suppose that y; Z1 mod w. Then

. (M SO . (M  Sv . (m s Sso
min ( —,0,— | <min(—,v,— ) < w=min ( —,0,max (1, -, —
r n r n T ron

and hence # > (17 S—Tf) and " > w = min (0, f) > min (%,v, %) Thus
S . S . SvU . SO
— > w =min (0, 7) > min (v, —) > min (07 —) .
r r n n

Since n | vr it follows that min(v, 2%) < & < 2% and hence o < v = min(v, %*) < min(o, 7), a contradiction.

(2) implies (1). We now suppose that y =1 mod w and we have to show that thereis c € N and d € bY N
satisfying the conditions in (1). If y = 1 mod o then bN = bYN and hence ¢ = a and d = b satisfy the
desired condition. If (1 + 7)Y = 147 mod m then a®’ = a'*" and hence ¢ = a¥ and b satisfy the desired
conditions. So we suppose that y Z 1 mod o and (1 + 7)Y # 1+ mod m. The first implies that w < o
and the second that y — 1 is not multiple of 0,,(1 +r) = 2, by Lemma 2.1.(1b) and hence w < 2. Thus
w = max(1, 2, %) < min(o, 7).

By Lemma 2.1.(1b) we have (14 r)¥ = 1+ r(1 + zu) with p { =, u a power of p and v,(w) < vp(u) =
vp(y — 1) < vp(2) < vp(s). Moreover, if u = 1 then p f 14+ . Let ¢; = b~ a. We now prove that

lci] = m. Observe that %* > 2% > o. Therefore ¢; € N. Moreover, as v,(u) < v,(s) it follows that
lc1 (a)| = 2 and 01% = azs+$<(1+r)IT|%). If u # 1 then vy(r) > vp(2) = vy(2) = v, (S (1 +7)*5 | £)) =
vp(zs +S ((1+7)*% | £)) and therefore G’ = (a”) C (c1) and |c1| = m, as desired. Otherwise, i.e. if u =1
then w = 1 and hence s < r and p | o | 2. Then zs + S ((1+7)*+ |s) = s(x + 1) # 0 mod pr because

nu
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s <rand pfax+ 1. Therefore also in this case v,(r) < v,(zs +S ((14r)**" | s)) and hence G’ C (c1) and
|c1| = m, as desired.

Since (1+7)"% =1 mod r% we have S ((1+7)*% |r) =r mod r™. Therefore (1+7)¥ —1— zru—

S((147)*% |r) =0 mod ™. Moreover, v,(1 — (1 +7)*%") = v,(r™), and hence there is an integer z
satisfying

nu

2= +r)"s )+ 1 +r)=1+zru+S((1+7)*|r) mod m.
Let d =bYa* € BYN. Using that u > w > f we have

¢ = ()P = Pt o7 (1= (1) " 5 )+ (1) _ ba:%al-l-wru—&-S((l-i-r)wnTuh) ol
On the other hand
d» = (byaz)n _ asy+z$((1+r)y\n)

and
& = (b a)* = g™ S (7).

if s>ntheno>w= max(%, ;) > % > o, a contradiction. Therefore, s is a proper divisor of n and hence
vp(sy+ 28 ((1+7)¥ | n)) = s. Then d" and ¢ are elements of (a) of the same order. Therefore b" = c*¢ for
some integer k coprime with p. Then ¢ = ¢ and d satisfy the conditions of (1).

Case 2. Suppose that e = —1.

(1) implies (2). Suppose that c and d = b¥a* satisfy the conditions of (1). Then4 | r and G’ = (a?) = (c?).
As in Case 1 we may assume that w # 1. Then both o and “* are multiple of 4 and we must prove, on the
one hand that y =1 mod 3+ and, on the other hand that y =1 mod 7%, if one of the following conditions
hold: 0 = n or, s =m # nr, or 2s = m = nr. From 4 | o and G/ {c) being cyclic we deduce (c¢) = (b*"a)
with o | v | n and 24 2. From G’ = (a?) = (c?) it follows that % | v so that v is either n or . If v = n then
(c) = (a). Therefore a=1*" = a? = a(='*"" and hence (—1+r)¥"! =1 mod 2™. Then y =1 mod 2 by
Lemma 2.1.(2b). This proves the result if o = n because in that case v is necessarily n.

n

Suppose otherwise that v = 5. Then we distinguish the cases m < nr and m = nr.
Assume that m < nr. Then, as 4 | o | v we have o,(—1 + 7) = max (2,2) < % = v and hence b" is

central in G. Then, having in mind that 4 | » and m | 2s, we have -

bxva(—1+7-)y _ (bg;va)byaz _ (bzva)—1+7- _ bgwa(bx'ua)r—Q — ba;va'r'—l—i-ws(g—l) _ b;c’ua—l-i-s—&-r.

Therefore (—1+r)Y = =1+ 7+ s mod m and in particular (=14 7)Y = —1+r mod s, since s | m. Using
Lemma 2.1 once more we deduce that y =1 mod 3 and if s = m then y =1 mod *.

Suppose otherwise that m = nr. Then, from Lemma 2.1.(2a) we have va((—1+7)" —1) = va(r) + v2(v) =
v2(r) + v2(n) — 1 = vo(2) so that a* = a'*% and (b"Pa)? = a®**% and hence (b*a)* = a. As 4o it
follows that (b*a)™ = a™. On the other hand, as y is odd, it follows that va((—1 + )Y + 1) = va(r) > 2,
by Lemma 2.1.(2c). Therefore, v2(S ((=147)¥ | n)) = va(rn) — 1 = va(m) — 1, by Lemma 2.1.(2a). Then
S((=1+7)Y|n) = % mod m an hence, having in mind that 8 | %% | s we deduce that a® = ¢* = d" =
avst2S((=14n)%In) — gs+2%3  Therefore z is even. On the other hand from ¢ = ¢~'*" and having in mind

that (—=1+7)" —1= % mod m and z is even, we obtain
bmva(71+'r)y _ (b:r'ua)b”az _ (bxva)flJrr _ bxva(bzva)’r’fZ _ b:r'ua(aszrZJr%)%fl _ bwva71+s+r+%'

Therefore (=1 + 7)Y = —1+r + s+ % mod m. Again, from m | 2s and Lemma 2.1.(2b) we deduce that
y=1 mod g and if s = 7 then y =1 mod =*.
(2) implies (1). Suppose that y =1 mod w. As y is odd, if o | 2 then b € Y N and hence a and b satisfy

condition (1). So we assume from now on that 4 | 0. In particular 4 | n. Suppose that m | 2r, i.e. r is either

mor 5 and let ¢ = a¥ and d = bYa?. In this case b? is central in P and hence ¢? = ¢? = ¢~ and applying

statements (2a) and (2c) of Lemma 2.1 we obtain d" = q¥s+S(=1+7)"In) — q¥5 — ¢5. Hence ¢ and d satisfy
the conditions of (1). ’
Thus from now on we assume that 4 divides both 0 and 2. Suppose that y =1 mod 2. Then a*’ = a® =

a7 because b* is central in P. Moreover, as m | 2s and y is odd we have (b¥)" = a®¥ = a®. Therefore

c = a and d = b¥ satisfy condition (1) and this finishes the proof of the lemma if w = ™ and it also proves

that for w = 3+ we may assume that y # 1 mod “*. So suppose that w = * and y # 1 mod "*. Then
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y=1+4: mod %, o <n and either m = s =nr or 2s = m < nr. Let ¢ =b%a and d = bY. Then, in both
cases, ¢? = a**% and, as 2 is multiple of 4 we have that G’ = (a*) = (c?), |c| = m and ¢* = a®. Moreover,
I = (bFa) 7 = bRa(bta) 2 = bFaa®T PG = b 2 pE a0 Z (b3 g E
and

d" = a0 E) = ¢° = ¢°.
Then ¢ and d satisfy the conditions of (1). O

Theorem 3.6. Let m,n,s € N with s | m and let T and T be (n,s)-canonical cyclic subgroups of Up,.-
Set [r,e,0] = [T), [F,€,0] = [T], 7 = w(r) U (x(n) \ 7(m)), * = 7(F) U (r(n) \ 7(m)), m' = [T,n,s] and
m' = [T,n,s|.

Then the following statements are equivalent.

(1) Gmnsr and G, ,, s are isomorphic.

(2) Resy (T) = Res (T).

(3) m =7, Resy,_, (Tr') = Res,,, , (T) and Resmﬂ,m; (Tp) = Resmw,m; (Tp) for every p € «.

Proof. Let G = Gypns1 and G = Gpnon,s,7- To distinguish the generators a and b in the presentation of
G and G we denote the latter by @ and b. We also denote A = (a), B = (b), A = (a) and B = (b). The
hypothesis warrants that G = AB and G = AB are minimal metacyclic factorizations by Proposition 3.4. In
particular, |[A| = |[A|=m =mg=mg, [G: A|=[G: Al=n=ng =ng, [G:B]=[G:B]=s=sg = sg,
T = Tg(A) and T = TG(A).

(2) implies (3) Suppose that statement (2) holds. Then, using that w(m) = w(m’) = w(m'), we have
Res,(T) = Res,(Res; (T)) = Resy(Resy (T)) = Res,(T) for every prime p dividing m. Thus, n/ = 7’
and, as m, = m/, we have Res,, ,(Tr) = Resm;/ (T, = Resm;, (T), = Res,_, (T/) and Resp ,m;, (Tp) =
Resm;,u{p} (1) = Resm;lu{p} (1), = Resm_ms, (T,) for every p € m(m) \ 7.

(1) implies (2). Suppose that G = G. Then, as T and T are (n,s)-canonical they yield the same
parameters, i.e. 7’ =7/, 0 = 0, etc.

Let f : G — G be an isomorphism and let ¢ = f(a), d = f(b), C = (c) and D = (d). Then C, =
f(G'w) = G'w = Ay, by Lemma 3.1.(3). Furthermore, Crv D,y = A, By because AB and AB are the
unique Hall 7/-subgroup of G and G, respectively. Then Resy , (T) = Tg(Ar) = Ta(Cr) = Resy, (T). As
Res, (Trr) = Res,,, (T) = 1 it follows that Res,, (Tr/) = Respy (Tyr). Since T and T are cyclic, it remains
to prove that Res,, (Tp) = Res; (T,) for every p € . Moreover, as G and G have the same parameters
e and r we have Resy,, (T) = Resy,, (T},) = (271 +1p), m, Denote R = e~ !+ 7, and select generators
t of Resm_,m: (T,) and t of Resy, ,ms (Tp) such that Resy,, (t) = Resp, (£)[R]m,. We already know that
Res,, , (T) = Res,,, (T) and in particular, there is an integer  coprime with p such that = t* mod m,.
If o, '< 2 then Restn;r/ (t) = Resy, (t) and if opy (R) < 2 then Respy (t) = [R¥];n, = [R]m, = Respy ().
In both cases Resp_,m (T) = (t) = (t*) = Respm_,m; (T), as desired. Therefore, in the remainder we may

assume that both o, and o, (R) are greater than 2 and, in particular, om, (R) = T:—;’ = Resy, (T') and this
number coincides with the w in Lemma 3.5. '

On the other hand A,B, and f(A,B,) = CpD, are Sylow p-subgroup of G and hence they are conju-
gate in G. Composing f with an inner automorphism of G we may assume that C,D, = A,B,. Then
(c,dr) = f({(a,br)) = f(Cq, (G'x)) = Cg,(G'») = (a,b°"). By Lemma 3.5 we have d = bVg for
some g € Cg,(G'w) and y = 1 mod w. Thus Resy, ,(f) = Res;, ,(tY) and Resyy (f) = Respy (t) =
Resy, () = Resy, (RY) = Resyy (1Y), because y =1 mod oy (R). Thus Res; s (T,) = Res,, ymi (1) =
Respr ,my (tY) = Res,y i, (Tp), as desired. ) )

(3)Wimplies (1) Sup}:;rose that the conditions of (3) holds. We may assume that a = @ and take generators tof
T and t of T so that G = (a,b), G = (a,b), with |a| =m, [G : (a)] =n, b" = a®, a* = d, ab = a’. Moreover,
from the assumption we may assume a’~" = ab+" and for every p € m we have Rosmﬂ,m/p (Tp) = Resy m;, (T,).
In particular, for every p € 7, we have (/™! +7‘p>m; = Resyy (Tp) = Respy (T,) = (& ' +7,). Since

p | my, | my, it follows that € = € and r,, = 7. Thus r = 7.
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We claim that for every p € 7 we can rewrite G, = (a,, bp) as G, = (¢p, dp) with ¢, € {ap,by") = Cq, (ar)
and d,, € bYCg, (ax) such that |c,| = m,, cg" = cfp, ai‘,’ = ai’i and dp” = ¢, .
Indeed, let p € m. The assumption <Resm7r,m; (tp)> = <Resmw,m; (fp)> implies that there is an integer
y coprime with |Res;, ,m (tp)| such that Resp, ,ms (£,) = Resm_ms (tp)Y. If 0p < 2 or o, (R) < 2 then,
as in the proof of (1) implies (2) we have that Res,, ,m,(t) = Resy,_,m,(f) so that ¢, = a, and d, = b,

satisfies the desired conditions. So assume that o, > 2 and o,,,(R) > 2. From the equality ag" = ag” we

deduce that RY = R mod mj, and this implies that y = 1 mod w where w = opy (R) = T—j and again
this w coincides with the one in Lemma 3.5. Applying Lemma 3.5 we deduce that (ap,b,) contain elements
cp € {ap,b) = Co,(an) and d, € b'Ca, (an) such that (ay,by) = (cp,dy), ey = my, 0% = a2 = a’s,
cg” = cf” and d,” = c;7, as desired. This finishes the proof of the claim.

For every p € m let ¢, and d,, as in the claim and set ¢ = a, HpEﬂ' cp and d = by HpETr dp, we deduce that

G = (¢,d) with |¢| = m, d” = ¢® and ¢* = af. Therefore G = G. O

The following corollary is a direct consequence (1) implies (2) of Theorem 3.6. It shows that Ag is well
defined.

Corollary 3.7. If G = AB = CD are two minimal factorizations of G then A(AB) = A(CD,).

4. Proofs of the main results

Proof of Theorem A. Let G and G be finite metacyclic groups and let G = AB and G = AB be minimal
metacyclic factorizations of G and G respectively. Denote m = |A|, m = |A|, n = [G : A], n = [G : 4],
s=[G:B],5=1[G: B], T =Tg(A) and T = Tg(A). We also denote m’ = [T,n,s], m' = [T,n, 3,
A = Resp (T) and A = Res;z/(T). Then G = Grynysry, G = Gpns 7o M =M@, N =ng, s = sg, 1 = ng,
m=meg, s =sg, T is (n, s)-canonical and T is (7, 5)-canonical. Moreover, A = Ag and A = Ag.

If G = G then m = m, n =n, s = 5 and, by Theorem 3.6 we have A = A. Thus MCINV(G) =

MCINV(G). i i
Conversely, if MCINV(G) = MCINV(G) then m = [A| = mg = mg = |A| = m and similarly n = n and
s = 5. Moreover, Res,,/[T] = Ag = Az = Respy (T'). Then G = G by Theorem 3.6. O

In the remainder of the section we use the notation in Theorem B.

Proof of (1) implies (2) in Theorem B. Suppose that (m,n, s, A) = MCINV(G) for some metacyclic group G
and let G = AB be a minimal factorization of G. Then m =mg = |A|,n=ng =[G : A], s = s¢ =[G : B
and if T = Tg(A) then A = A(AB) = Res,(T). In particular, s | m, T is a cyclic subgroup of U™*,
[T] = [A] and m), = m,. Moreover, v = w(m') \ 7(r) and s, = m,, by Lemma 3.1. Moreover, |A| divides
n, because it divides |T'|, which in turn divides n. Then conditions (2a) and (2b) of Theorem B hold. By
Lemma 2.2, Lemma 3.1 and Lemma 3.2 we have 7 = ng, gy = v, 0 = 0@, € = €¢ and r = r¢. Let p € w(r).
If =1 = 1 then T—: = |Resm, (Tp)| < np and if € = —1 then max(2, 72) = |Respm, (12)| < [T2] < n2 and
ma < 2s3. As the metacyclic factorization G = AB is minimal, T is (n, s)-canonical by Proposition 3.4.
Then the remaining conditions in (2¢) and (2d) follow. O

Proofs of Theorem C and (2) implies (1) in Theorem B. Suppose that m,n,s and A satisfy the conditions
of (2) in Theorem B. By Remark 1.2 there is a cyclic subgroup T of U with Res,, (T) = A and [T] = [A].
Let t € N with T = (t),,. Let G = Gy n s and denote A = (a) and B = (b). We will prove that G = AB
is a minimal factorization of G that m = |A|, n =[G : 4], s =[G : B] and A = A(AB). This will complete
the proofs of Theorem B and Theorem C.

Of course G = AB is a metacyclic factorization of G and T' = T (A). Since m, = s,, n is multiple of
|A| and | Resy,, (T)] = |Resm, (A)], it follows that | Res,,, (T)| divides n and s(t — 1). On the other hand
if p | 7 then ¢t = ¢! 4+ 7, mod my,. Therefore, if =1 =1 then oy, (t) = T—: | nand s(t —1) = srp, =0
mod my,. Otherwise, ie. if e = —1 and p = 2, then 2 [ [A] [ n and T2 < ny and ma | 2s. Thus
Omy () = 0y (=1 +12) = max(2, 72) < np and my | t(s — 1). This shows that m divides both ¢" — 1 and
s(t—1),ie. T CU®. Then |A| =m and [G : A] =n, and hence [G : B] = s. From condition (2b) we have
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that A = Res;/ (Ta(A4)) = A(AB) and from conditions (2d) and (2c) it follows that T' is (n, s)-canonical.
Then the metacyclic factorization G = AB is minimal by Proposition 3.4. ]

Having in mind that a metacyclic group is nilpotent if and only if o = 1 one can easily obtain from
Theorem B a description of the finite nilpotent metacyclic groups or equivalently the values of the lists of
metacyclic invariants of the finite nilpotent metacyclic groups. Observe that (1) corresponds to cyclic groups,
(2) to 2-generated abelian groups, (3) to non-abelian nilpotent metacyclic groups G with e = 1 and (4) to
metacyclic nilpotent groups with eq = —1.

Corollary 4.1. Let m,n,s € N and t € NU{0}. Then (m,n,s,t) is the list of metacyclic invariants of a
finite metacyclic nilpotent group if and only if s | m, t < m and one of the following conditions hold:

(1) m=1.

(2) t=1and s =m < n.

(8) w(t—1) =n(m), lcm(t—l,%) | s|n and if 4| m then 4|t — 1.

(4) There is a divisor r of soyma such that w(r) = w(m), 4 | r, t = 1+ ry mod mo, t = =1+ ro
mod mao, % | s2/ | no/, max (2, T—; < ng, mg < 289 and sg # nary. If moreover 4 | n and 8 | m
then ro < 89.

In that case G, is nilpotent with metacyclic invariants (m,n, s,t).

5. A GAP implementation

In this section we show how we can use the result in previous sections to construct some GAP functions
for calculations with finite metacyclic groups. The code of these function is available in
https://www.um.es/adelrio/MetaCyc.php

We start with two auxiliar functions. We call metacyclic parameters to any list (m,n, s, t) withm,n,s € N
and [t],, € UM ie. s(t—1) =" —1 mod m. In that case MetacyclicGroupPC([m,n,s,t]) outputs the
group Gp, n,s,+ With a power-conjugation presentation. The boolean function IsMetacyclic returns true if
the input is a finite metacyclic and false otherwise.
gap> G:=MetacyclicGroupPC([10,20,5,3]);
<pc group of size 200 with 5 generators>
gap> IsMetacyclic(G);
true
gap> Filtered([1..16],x->IsMetacyclic(SmallGroup(100,x)));

[1, 2, 3, 4, 5, 6, 8, 9, 14, 16 ]

To introduce the next function we start presenting an algorithm that uses Algorithm 1 to compute
MCINV(G) for a given metacyclic group G. Observe that in Algorithm 1 the values of m = |a|, n = [G : (a)],
s =[G : (a)] and (r,€,0) = [Tg({a))] are updated along the calculations. We use this in step (2) of the
following algorithm.

Algorithm 2. INPUT: A finite metacyclic group G.
Outputr: MCINV(G).
(1) Compute a metacyclic factorization G = AB of G.
(2) Perform Algorithm 1 with input (A, B) saving not only the output ((a), (b)) but also m,n, s, r, e and
o computed along.
(8) Compute m' using (1.1) and t € N such that a® = a'.
(4) Return (m,n,s,Resy/((t),.)).

A slight modification of Algorithm 2 allows the computation of the list of metacyclic invariants of a finite
metacyclic group:

Algorithm 3. INPUT: A finite metacyclic group G.
OutrputT: The list of metacyclic invariants of G.
(1) Compute a metacyclic factorization G = AB of G.
(2) Perform Algorithm 1 with input (A, B) saving not only the output ({a), (b)) but also m,n,s,r and €
computed along.
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(3) Compute m’ using (1.1) and t € N such that a® = a' and set A := Res,/((t),,)-

(4) Use the Chinese Remainder Theorem to compute the unique 1 <t < my .y such that t = e+,
mod m,, for every p € w(r).

(5) While ged(t,m') # 1 or (t),,, # A, t :=t + M.

(6) Return (m,n,s,t).

Observe that G = (a) (b) is a minimal metacyclic factorization at step (2) of Algorithm 3, and m = mg,
n =ng and s = sg. Atstep (3), we have T ((a)) = (t),, and hence G = G, s and A = Ag = Res, ((1),,,)-
However, this ¢ is not ¢ yet. The ¢ at step Item 4 is the smallest one with ¢ = e#~! +r, mod m,, for every
p € 7(r) and the next steps search for the first integer ¢ satisfying this condition as well as representing an
element of Uy, with Res,,/((t),,) = A.

The GAP function MetacyclicInvariants implements Algorithm 3. For example in the following calcu-
lations one computes the metacyclic invariants of all the metacyclic groups of order 200.

gap> mc200:=Filtered([1..52],i->IsMetacyclic(SmallGroup(200,i)));;

gap> List(mc200,i->MetacyclicInvariants(SmallGroup(200,1i)));
[[25,8,25,24],[1,200,1,0],[25,8,25,7],[100,2,50,99],[100,2,50,49], [100,2,100,99],
[50,4,50,49], [2,100,2,1], [4,50,4,3], [4,50,2,3]1, [50,4,50,7], [6,40,5,4], [5,40,5,1],
[5,40,5,2],[20,10,10,19], [20,10,10,9], [20,10,20,19], [10,20,10,9], [10,20,10,1],
[20,10,20,11],[20,10,10,11],[10,20,10,3]]

The GAP functions MCINV and MCINVData implement Algorithm 2 representing MCINV(G) in two different
ways. While MCINV(G) outputs MCINV(G) if G is a metacyclic group, MCINVData(G) ouputs a 5-tuple
[m,n,s,m’,t] such that MCINV(G) = (m,n,s,(t),,,). The input data G can be replaced by metacyclic
parameters [m,n, s, t] representing the group G, s+
gap> G:=SmallGroup(384,533);
<pc group of size 384 with 8 generators>
gap> MetacyclicInvariants(G);

[ 8, 48, 4, 5]

gap> x:=MCINV(G);

[ 8, 48, 4, <group of size 1 with 1 generator> ]
gap> y:=MCINVData(G);

[ 8, 48, 4, 4, 1]

gap> x[4]=Group(ZmodnZ0bj (y[5],y[41));
true

gap> H:=MetacyclicGroupPC([8,48,4,5]);
<pc group of size 384 with 8 generators>
gap> IdSmallGroup(H);

[ 384, 533 1]

gap> MetacyclicInvariants([20,4,8,11]);

[ 4, 20, 4, 3]

gap> MCINVData([20,4,8,11]);

[ 4, 20, 4, 4, 3]

Observe that two finite metacyclic groups G and H are isomorphic if and only if MCINV(G) = MCINV(G)
if and only if they have the same metacyclic invariants. The function AreIsomorphicMetacyclicGroups uses
this to decide if two metacyclic groups G and H are isomorphic. It outputs true if G and H are isomorphic
finite metacyclic groups and false if they are finite metacyclic groups but they are not isomorphic. In case
one of the inputs is not a finite metacyclic group then it fails. The input data G and H can be replaced by
metacyclic parameters of them.
gap> H:=MetacyclicGroupPC([100,30,10,31]);
<pc group of size 3000 with 7 generators>
gap> K:=MetacyclicGroupPC([300,30,10,181]);
<pc group of size 9000 with 8 generators>
gap> ArelsomorphicMetacyclicGroups(H,K);
false
gap> ArelsomorphicMetacyclicGroups([300,10,10,31],K);
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false

gap> G:=MetacyclicGroupPC([300,10,10,31]);
<pc group of size 3000 with 7 generators>
gap> MetacyclicInvariants(G) ;

[ 100, 30, 10, 31 1]

gap> MetacyclicInvariants(H);

[ 100, 30, 10, 31 1]

gap> MetacyclicInvariants(K) ;

[ 50, 180, 10, 31 1]

We now explain a method to compute all the metacyclic group of a given order N. We start producing all
the tuples (m,n, s, €,0) such that MCINV(G) = (m,n,s,A) and [A] = (r,¢€,0) for some finite metacyclic
group G and some cyclic subgroup A of U, with m’ as in (1.1). For such group G we denote IN(G) =
(m,n,s,r,€,0). The following lemma characterizes when a given tuple (m,n,r,s,r €,0) equals IN(G) for
some finite metacyclic group:

Lemma 5.1. Let m,n,s,r,0 € N and € € {1,-1} and let 7’ = w(m) \ 7(r) and 7 = w(mn) \ ©’. Then
IN(G) = (m,n,s,r,e,0) for some finite metacyclic group G if and only if the following conditions hold:
(A) s|m,r|m,o|ng, mg|rn, mg|rs, Sgr =my and if 4 | m then 4 | r.
(B) If p € n(r) and ?~1 =1 then s, | n and either r, | s or spo, { n.
(C) If e=—1 then 2 | n, 4 | m, ma | 28, so # nara. If moreover 4 | n, 8 | m and oy < ny then ra | s.
(D) o|lem{qg—1:q € 7'} and for every q € 7w’ with ged(o,q—1) =1 there isp € 7’ N7(n) withp | g— 1.

Proof. Suppose first that (m,n, s, r,€,0) = IN(G) for some finite metacyclic group G. Then MCINV(G) =
(m,n,s,A) for some cyclic subgroup A of U, with [A] = (r,e,0). Then the conditions in statement
(2) of Theorem B hold and this implies that conditions (A)-(C) hold. To prove (D) we fix a metacyclic
factorization G = AB and observe that o = og(A) = |Res;, , (Ta(A))x| and Resy, ,(Tg(A))r is a cyclic
subgroup of (Up,_, )=. Then o divides the exponent of (U, , )» which is lem{(¢—1)r : ¢ € 7’}. This proves the
first part of (D). To prove the second one we take ¢ € 7’ such that ged(o,q¢ — 1) = 1. By Lemma 3.1.(4), we
have Res,(T¢(A)) # 1. However Res,(TG(A))r | ged(o,q—1) = 1 and hence, if p is a divisor of Res, (TG (A))
then p | Uyl =q—1,p|[G: Al =n and p ¢ 7, so that p € ’. This finishes the proof of (D).

Conversely, suppose that conditions (A)-(D) hold. By condition (D), 2 ¢ 7’ and hence if ¢ € ©’ then
U, is cyclic of order ¢(mg). Therefore for every ¢ € 7', the group U, contains a cyclic subgroup of
order ¢ — 1. Therefore U,, contains a cyclic subgroup of order k¥ = lem{q — 1 : ¢ € 7’'}. Furthermore, by
(D), for every p € m we have that o, | k and hence o, | ¢ — 1 for some ¢ € 7’. Then U,,, contains an
element of order o, and, as U,, , = [] gen Um,, it follows that U, , contains an element of order o. Let
7 ={q € n’ :ged(o,q— 1) = 1}. By (D), for every q € 7 there is p; € #’ Nw(n) such that p, | ¢ — 1. Let
h=T1] qer Pa- For every g € 7, there is an element in U,,, of order p,. Then U, has an element of order
h. As o|ny and h | ng, Uy, , has a cyclic subgroup S of order oh. Then Aut(Cy,) has a cyclic subgroup T
such that Resy, ,(T) = S and Res,,, (T) = Resyy,, (T') = (e + Tp>mp for every p € w. By condition (B), if
pem(r) and ' =1 then |Res,, (T)| = T—: | np. By condition (C), if e = —1 then2 € m, 2| nand 72 [n
by (A). Thus |Resy,, (T')| = max(2, 72) | n. Then |Res,,, (T')| divides n for every p € m. This implies that
|T'| = lem(|S], |Res,,, (T')], p € 7) and this number divides n. On the one hand we have s, = mg and if
p € 7 then either m,, | 7s or p = 2, ¢ = —1 and 2my | s. Using this it is easy to see that Res= (T') = 1. This
proves that 7' C U and by the election of T' it follows that [T] = (r,€,0). Moreover, from conditions (B)
and (C), it follows that T' is (n, s)-canonical and hence Gy, s 7 = (a) (b) is a minimal factorization. Thus
IN(Gmon,s,1) = (myn, s,7,€,0), as desired. O

Our last algorithm is based in Lemma 5.1 and compute a list containing exactly one representative of
each isomorphism class of the metacyclic groups of a given order.

Algorithm 4. INPUT: A positive integer N.
OuTPUT: A list containing exactly one representative of each isomorphism class of the metacyclic groups
of order N.

(1) M :=1], an empty list, 7’ := w(m) \ n(r), 7’ :=x(N)\ 7.
(2) P:={(m,n,s,reo0):nm,sro€Nee{l,—1}, N =mn and conditions (A)-(D) hold}.
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(8) For each (m,n,s,r,€,0) € P:
(a) m" :=mp [],cp(y My withmy, as in (1.1) and s’ :=

’
sm
m

(b) For every cyclic subgroup A of Z/l:l’,sl with [A] = (r,€,0):
o Select a cyclic subgroup T of Uy, such that Res,, (T) = A.
o Add Gy 5,1 to the list M.
(4) Return the list M.

Observe that if (m,n,s,r € 0) satisfy conditions (A)-(D) then m divides sm’. Indeed, if p t r then

my = my,. If e = —1 then “32 divides s and 2 [ m/, hence in this case 2 | m’. Finally, if p € 7(r) and

e?~1 = 1. Then p € 7 and hence m, < r,s, by condition (A). Therefore

m

2 < min(my, rp0p). If 7, | s, then
also T—: < sp. Otherwise s,0, { n and hence 7, Sf:)p >y, > T—: This proves that T—: | m’ for every prime p,
so that m | sm’/, as desired. This justify that s’ € N is step (3a).

On the other hand if T' is as in (3b) then 7' C U,*. Indeed, * = 7;’—,/ and hence Res= (T') = Resn/ (A) = 1.
Moreover Res,, ,(T') = Res,,/, (A) and hence |Res,, ,(T)| divides n. On the other hand [T] = (r,¢,0) = [T]
and hence if ?~! =1 then |Resp,, (T)] = 22 | n, by (A). Otherwise | Resy,, T2| = max(2, 72) which divides
n by (A) and (C).

The function MetacyclicGroupsByOrder (N) implements a combination of Algorithm 3 and Algorithm 4
and returns the complete list of metacyclic invariants of metacyclic groups of order N.

gap> MetacyclicGroupsByOrder (200) ;
[f1,200,1,0],[2,100,2,1], [4,50,2,3], [4,50,4,3], [5,40,5,1], [5,40,5,2], [6,40,5,4],
(10,20,10,1],[10,20,10,3],[10,20,10,9], [20,10,10,9], [20,10,10,11], [20,10,10,19],
[20,10,20,11],[20,10,20,19], [25,8,25,7], [25,8,25,24], [50,4,50,7], [50,4,50,49],
[100,2,50,49],[100,2,50,99],[100,2,100,99]]

gap> MetacyclicGroupsByOrder (8x3*5%7) ;

[[1,840,1,0],[2,420,2,1],[3,280,3,2], [4,210,2,3],[4,210,4,3],[5,168,5,2],[5,168,5,4],
[6,140,6,5],([7,120,7,2],[7,120,7,6],[7,120,7,3],[10,84,10,3],[10,84,10,9], [12,70,6,5],
(12,70,6,11]1,[12,70,12,11],[14,60,14,3],[14,60,14,9],[14,60,14,13],[15,56,15,2],
[15,56,15,14], [20,42,10,9], [20,42,10,19], [20,42,20,19], [21,40,21,20], [28,30,14,3],
[28,30,14,5],[28,30,14,11]1,[28,30,14,13], [28,30,14,27], [28,30,28,3], [28,30,28,11],
[28,30,28,27], [30,28,30,17], [30,28,30,29], [35,24,35,2], [35,24,35,3], [35,24,35,4],
(35,24,35,13], [35,24,35,19], [35,24,35,34] , [42,20,42,41], [60,14,30,29], [60,14,30,59],
[60,14,60,59],[70,12,70,3], [70,12,70,9], [70,12,70,13], [70,12,70,19], [70,12,70,23],
[70,12,70,69],[84,10,42,41],[84,10,42,83],[84,10,84,83],[105,8,105,62],[105,8,105,104],
[140,6,70,9], [140,6,70,19],[140,6,70,39], [140,6,70,69], [140,6,70,89], [140,6,70,139],
[140,6,140,19], [140,6,140,39],[140,6,140,139],[210,4,210,83],[210,4,210,209],
[420,2,210,209], [420,2,210,419], [420,2,420,419]]

References

[Bey72] F. R. Beyl, The classification of metacyclic p-groups, and other applictations to homological algebra to group theory,
ProQuest LLC, Ann Arbor, MI, 1972, Thesis (Ph.D.)-Cornell University. MR 2622614

[GAP12] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.5.6, 2012.

[Hal59] M. Hall, Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215

[Hem00] C. E. Hempel, Metacyclic groups, Communications in Algebra 28 (2000), no. 8, 3865-3897.

[Kin73] B. W. King, Presentations of metacyclic groups, Bull. Austral. Math. Soc. 8 (1973), 103-131. MR 323893

[Lie94]  S. Liedahl, Presentations of metacyclic p-groups with applications to K -admissibility questions, J. Algebra 169 (1994),
no. 3, 965-983. MR 1302129

[Lie96] , Enumeration of metacyclic p-groups, J. Algebra 186 (1996), no. 2, 436-446. MR, 1423270

[Lin71] W. Lindenberg, Struktur und Klassifizierung bizyklischer p-Gruppen, Gesellschaft fiir Mathematik und Datenverar-
beitung, Bonn, 1971, BMBW-GMD-40. MR 0285609

[NX88] M. F. Newman and M. Xu, Metacyclic groups of prime-power order, Adv. in Math. (Beijing) 17 (1988), 106-107.
MR 0404441

[Réd89] L. Rédei, Endliche p-Gruppen, Akadémiai Kiad4, Budapest, 1989. MR 992619

[Sim94] Hyo-Seob Sim, Metacyclic groups of odd order, Proc. London Math. Soc. (3) 69 (1994), no. 1, 47-71. MR 1272420

[Zas99] H. J. Zassenhaus, The theory of groups, Dover Publications, Inc., Mineola, NY, 1999, Reprint of the second (1958)
edition. MR 1644892




	Introduction
	Notation and preliminaries
	Metacyclic factorizations
	Proofs of the main results
	A GAP implementation

