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Abstract. We obtain a new classification of the finite metacyclic group in terms of group invariants. We

present an algorithm to compute these invariants, and hence to decide if two given finite metacyclic groups

are isomorphic, and another algorithm which computes all the metacyclic groups of a given order. A GAP
implementation of these algorithms is given.

1. Introduction

Classifying groups is a fundamental problem in group theory. Unfortunately it is a task which seems out
of reach except for restricted families of groups. One of the classes which have received much attention is
that of finite metacyclic groups. It is well known that every finite metacyclic group has a presentation of the
following form

Gm,n,s,t =
〈
a, b | am = 1, bn = as, ab = at

〉
for natural numbers m,n, s, t satisfying s(t−1) ≡ tn−1 ≡ 0 mod m. However, the parameters m,n, s and t
are not invariants of the group. Traditionally the authors dealing with the classification of finite metacyclic
group select distinguished values of m,n, s and t so that each isomorphism class is described by a unique
election of the parameters (see [Zas99, Hal59, Bey72, Kin73, Lie96, Lie94, NX88, Réd89, Lin71, Sim94]). This
approach was culminated by C.E. Hempel who presented a classification of all the finite metacyclic groups
in [Hem00]. However it is not clear how to use this classification to describe the distinguished parameters
identifying a given metacyclic group and how those distinguished parameters are connected with group
invariants.

The aim of this paper is to present an alternative classification of the finite metacyclic using a slightly
different approach in terms of group invariants which allows an easy implementation. Namely, we associate
to every finite metacyclic group G a 4-tuple MCINV(G) = (mG, nG, sG,∆G) where mG, nG and sG play
the role of m,n and s in the presentation above and ∆G is a cyclic subgroup of units modulo a divisor of
mG. Our main result consists in proving that MCINV(G) is an invariant of the group G which determines
G up to isomorphism, i.e. if G and H are two finite metacyclic groups then they are isomorphic if and
only if MCINV(G) = MCINV(H) (Theorem A). Moreover, we describe in Theorem B the possible values
(m,n, s,∆) of MCINV(G) and for such value we show how to find an integer t such that MCINV(Gm,n,s,t) =
(m,n, s,∆) (Theorem C). This allows a computer implementation of the following function: one which
computes MCINV(G) for any given finite metacyclic group, and hence of another function which decide
whether two metacyclic groups are isomorphic, and another one which computes all the metacyclic subgroups
of a given order.

To define MCINV(G) we need to introduce some notation. First of all, we adopt the convention that 0 is
not a natural number, so N denotes the set of positive integers. Moreover by a prime we mean a prime in
N. If m ∈ N, p is a prime, π is a set of primes and A a finite abelian group then we denote
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π(m) = set of primes dividing m,
Um = group of units of the ring Z/mZ,
mp = maximum power of p dividing m,
mπ =

∏
p∈πmp,

Aπ = Hall π-subgroup of A,
Aπ′ = Hall π′-subgroup of A.

If t ∈ Z with gcd(t,m) = 1 then [t]m denotes the element of Um represented by t and 〈t〉m denotes the
subgroup of Um generated by [t]m. If q | m then Resq : Um → Uq denotes the natural map, i.e. Resq([t]m) =
[t]q.

Let T be a cyclic subgroup of Um. Then we define [T ] = (r, ε, o)

r = greatest divisor of m such that Resr2′ (T ) = 1 and Resr2(T ) ⊆ 〈−1〉r2 ;

ε =

{
−1, if Resr2(T ) 6= 1;

1, otherwise.

o = |Resmν (Tν′)|, with ν = π(m) \ π(r).

If moreover, n, s ∈ N then we denote

[T, n, s] = mν

∏
p∈π(r)

m′p

with m′p defined as follows:

if εp−1 = 1 then m′p = min

(
mp, oprp,max

(
rp, sp, rp

spop
np

))
;

if ε = −1 then m′2 =


r2, if either o2 ≤ 2 or m2 ≤ 2r2;
m2

2 , if 4 ≤ o2 < n2, 4r2 ≤ m, and if s2 ≤ n2r2 then s2 = m2 < n2r2;

m2, otherwise.

(1.1)

Let A be a cyclic group of order m. Then the map σA : Um → Aut(A) associating [r]m with the map
a 7→ ar, is a group isomorphism. If moreover A is a normal subgroup of a group G then we define

TG(A) = σ−1
A (InnG(A)),

where InnG(A) is formed by the restriction to A of the inner automorphisms of G. We introduce notation
for the entries of TG(A) by setting

(rG(A), εG(A), oG(A)) = [TG(A)].

Definition 1.1. Let G be a group. A metacyclic kernel of G is a normal subgroup A of G such that A and
G/A are cyclic. A metacyclic factorization of a group G is an expression G = AB where A is a normal
cyclic subgroup of G and B is a cyclic subgroup of G.

A minimal kernel of G is a kernel of G of minimal order.
A metacyclic factorization G = AB is said to be minimal in G if (|A|, rG(A), [G : B]) is minimal in the

lexicographical order. In that case we denote mG = |A|, nG = [G : A], sG = [G : B] and rG = rG(A).

Clearly a group is metacyclic if and only if it has metacyclic kernel if and only if it has a metacyclic
factorization. Sometimes we abbreviate metacyclic kernel of G or metacyclic factorization of G and we
simply say kernel of G or factorization of G.

If G = AB is a metacyclic factorization of G then we denote

∆(AB) = Res[T,n,s](T ), with T = TG(A), n = [G : A] and s = [G : B].

We will prove that ∆(AB) is constant for all the minimal metacyclic factorizations (Corollary 3.7). This
allows to define the desired invariant:

MCINV(G) = (|A|, [G : A], [G : B],∆(AB)), with G = AB minimal factorization of G.

Our first result states that MCINV(G) determines G up to isomorphisms, formally:

Theorem A. Two finite metacyclic groups G and H are isomorphic if and only if MCINV(G) = MCINV(H).

Our next result describes the values realized as MCINV(G) with G a finite metacyclic group.
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Theorem B. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Let [∆] = [r, ε, o] and
ν = π(m) \ π(r). Then the following conditions are equivalent:

(1) (m,n, s,∆) = MCINV(G) for some finite metacyclic group G.
(2) (a) s divides m, |∆| divides n and mν = sν = m′ν .

(b) (1.1) holds for every p ∈ π(r).
(c) If ε = −1 then m2

r2
≤ n2, m2 ≤ 2s2 and s2 6= n2r2. If moreover 4 | n, 8 | m and o2 < n2 then

r2 ≤ s2.
(d) For every p ∈ π(r) with εp−1 = 1, we have

mp
rp
≤ sp ≤ np and if rp > sp then np < spop;

Our last result shows how to construct a metacyclic group G with given MCINV(G): If m,n, s ∈ N with
s | m then we define the following subgroup of Um:

Un,sm = {[t]m : m | s(t− 1), and tn ≡ 1 mod m}.
If T is a cyclic subgroup of Un,sm generated by [t]m then we denote

Gm,n,s,T = Gm,n,s,t = {a, b : am = 1, bn = as, ab = at}.
It is easy to see that the isomorphism type of this group is independent of the election of the generator [t]m
of T (Lemma 2.2.(5)). Moreover, the assumption T ⊆ Un,sm warranties that |a| = m, |Gm,n,s,T | = mn and
|b| = mn

s .

Remark 1.2. Suppose that m,n, s and ∆ ≤ Um′ satisfy the conditions of statement (2) in Theorem B and
[∆] = (r, ε, o). Then Resm′

p
(∆) =

〈
εp−1 + rp

〉
m′
p

for every p ∈ π(r) and hence there is an integer t′ such

that ∆ = 〈t′〉m′ and t′ ≡ εp−1 + rp mod m′p for every p ∈ π(r). Using the Chinese Remainder Theorem

we can select an integer t such that t ≡ t′ mod m′ and t ≡ εp−1 + rp mod mp for every p ∈ π(r) and
let T = 〈t〉m. Then T ⊆ Un,sn , Resm′(T ) = ∆ and [T ] = [∆]. Then the following theorem ensures that
MCINV(Gm,n,s,T ) = (m,n, s,∆).

Theorem C. Let m,n, s ∈ N and let ∆ be a cyclic subgroup of Um′ with m′ | m. Suppose that they satisfy the
conditions of (2) in Theorem B and let T be a cyclic subgroup of Un,sm such that [T ] = [∆] and Resm′(T ) = ∆.
Then (m,n, s,∆) = MCINV(Gm,n,s,T ).

For implementation it is convenient to replace the fourth entry of MCINV(G) by a distinguished integer
tG so that G ∼= GmG,nG,sG,tG and G ∼= H if and only if (mG, nG, sG, tG) = (mH , nH , sH , tH). We select
tG satisfying the conditions of Remark 1.2. In particular, [tG]mπ is uniquely determined by the condition
t ≡ εp−1 + rp mod mp for every p ∈ π(r). However there is not any natural election of [tG]mπ′ and we
simply take the minimum possible value. More precisely, if (m,n, s,∆) = MCINV(G), (r, ε, o) = [∆] and m′

is given by (1.1) then define

tG = min{t ≥ 0 : Resm′(〈t〉m) = ∆ and t ≡ εp−1 + rp mod mp for every p ∈ π(r)}.
We call (mG, nG, sG, tG) the list of metacyclic invariants of G. Clearly if H is another metacyclic group then
G ∼= H if and only if G and H have the same metacyclic invariants. Moreover, by Theorem C, if (m,n, s, t)
is the list of metacyclic invariants of G then G ∼= Gm,n,s,t.

We outline the contains of the paper: In Section 2 we introduce the general notation, not mentioned in
this introduction, and present some preliminary technical results. In Section 3 we prove several lemmas on
metacyclic factorizations aiming to an intrinsic description of when a metacyclic factorization is minimal.
It includes an algorithm to obtain a minimal metacyclic factorization from an arbitrary one. This section
concludes with Theorem 3.6 which is the keystone to prove Theorem A, Theorem B and Theorem C in
Section 4. In Section 5 we introduce an algorithm to compute the metacyclic invariants of a given metacyclic
group and use this to decide if two metacyclic groups are isomorphic, and another algorithm to construct
all the metacyclic groups of a given order. We present also implementations in GAP [GAP12] of these
algorithms.

2. Notation and preliminaries

By default all the groups in this paper are finite. We use standard notation for a group G: Z(G) = center
of G, G′ = commutator subgroup of G, Aut(G) = group of automorphisms of G. If g, h ∈ G then |g| = order
of g, gh = h−1gh, [g, h] = g−1gh. If π is a set of primes then gπ and gπ′ denote the π-part and π′-part of g,
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respectively. When p is a prime we rather write gp and gp′ than g{p} and g{p}′ , respectively. Similarly, if G
is a finite abelian group then Gp and Gp′ denote the p-part of G and the p′-part of G, respectively.

Let G be a metacyclic group. Observe that A is a kernel of G if and only if G has a metacyclic factorization
of the form G = AB. In that case, if

m = |A|, n = [G : A], s = [G : B] and T = TG(A) = 〈t〉m ,
then s | m, |B| = nms , T ⊆ Un,sm and A and B have generators a and b, respectively, such that bn = as and

ab = at. Thus G ∼= Gm,n,s,T .
If p is a prime then vp denotes the p-adic valuation on the integers.
Let a ∈ Z and m ∈ N. If gcd(a,m) = 1 then om(a) denotes the order of [a]m i.e. om(a) = min{n ∈ N :

an ≡ 1 mod m}. If a 6= 0 then we denote

S (a | m) =

m−1∑
i=0

ai =

{
m, if a = 1;
am−1
a−1 , otherwise.

This notation occurs in the following statement where g and h are elements of a group:

(2.1) If gh = ga then (hg)m = hmgS(a|m).

The following lemma collects some useful properties of the operator S (− | −) which will be used through-
out.

Lemma 2.1. Let p,R,m ∈ N with p prime and suppose that R ≡ 1 mod p.

(1) Suppose that either p 6= 2 or p = 2 and R ≡ 1 mod 4. Then
(a) vp(R

m − 1) = vp(R− 1) + vp(m) and vp(S (R | m)) = vp(m).

(b) opm(R) = pmax(0,m−vp(R−1)).
(c) If a = vp(R− 1) ≤ m then 〈R〉pm = {[1 + ypa]pm : 0 ≤ y < pm−a}.

(2) Suppose that R ≡ −1 mod 4. Then

(a) v2(Rm − 1) =

{
v2(R+ 1) + v2(m), if 2 | m;

1, otherwise;

and v2(S (R | m)) =

{
v2(R+ 1) + v2(m)− 1, if 2 | m;

0, otherwise;
.

(b) o2m(R) =

{
1, if m ≤ 1;

2max(1,m−v2(R+1)), otherwise
.

(c) v2(Rm + 1) =

{
v2(R+ 1), if 2 - m;

1, otherwise.
.

Proof. (1a) The first equality can be easily proven by induction on m. Then the second follows from
Rm − 1 = (R− 1)S (R | m).

(1b) is a direct consequence of (1a).
(1c) By (1a) we have 〈R〉pm ⊆ {[1 + ypa]pm : 0 ≤ y < pm−a} and by (1b) the first set has pm−a elements.

As the second one has the same cardinality, equality holds.
(2a) Suppose that R ≡ −1 mod 4. If 2 - m then Rm ≡ −1 mod 4 and hence v2(Rm− 1) = 1. As R2 ≡ 1

mod 4, if 2 | m then, by (1a) we have v2(Rm−1) = v2((R2)
m
2 −1) = v2(R2−1)+v2

(
m
2

)
= v2(R+1)+v2(m).

This proves the first part of (2a). Then the second part follows from Rm − 1 = (R− 1)S (R | m).
(2b) follows easily from (2a).
(2c) Since R is odd, both Rm− 1 and Rm + 1 and are even and exactly one of v2(Rm− 1) and v2(Rm + 1)

equals 1. Thus, from (2a) we deduce that if 2 | m then v2(Rm + 1) = 1. Suppose otherwise that m is
odd and greater than 2. Then v2(Rm−1 − 1) = v2(R + 1) + v2(m − 1) > v2(R + 1), so that v2(Rm + 1) =
v2(R(Rm−1 − 1 + 1) + 1) = v2(R+ 1 +R(Rm−1 − 1)) = v2(R+ 1).

�

The following lemma follows by straightforward arguments.

Lemma 2.2. Let m,n, s ∈ N, let T be a cyclic subgroup of Um, and denote (r, ε, o) = [T ], m′ = [T, n, s] and
∆ = Resm′(T ).
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(1) If T = 〈t〉m then |T | = om(t), r2′ = gcd(m2′ , t − 1), r2 = max(gcd(m2, t − 1), gcd(m2, t + 1)) =
gcd(m2, t− ε) and o = omν (t)ν′ with ν = π(m) \ π(r).

(2) r | m′ | m and π(m) = π(m′).
(3) [T ] = [∆].
(4) For every p ∈ π(r) we have Resmp(Tp) =

〈
εp−1 + rp

〉
mp

and

|Resmp(Tp)| =

{
2, if p = 2, ε = −1 and r2 = m2;
mp
rp
, otherwise.

(5) If s | m and T ⊆ Un,sm then mπ(r) | rn, mπ(r) | rs, o | nπ(m)\π(r) and if ε = −1 then m2 ∈ {s2, 2s2}.
If moreover T = 〈t〉m = 〈u〉m then there is a k ∈ N with gcd(k, |T |) = 1 and a 7→ ak, b 7→ bk defines
an isomorphism Gm,n,s,t → Gm,n,s,u.

Definition 2.3. Given m,n, s ∈ N with s | m and a cyclic subgroup of Um, we say that T is (n, s)-canonical
if T ⊆ Un,sm and if (r, ε, o) = [T ] then the following conditions are satisfied:

(Can–) If ε = −1 then s2 6= r2n2. If moreover, m2 ≥ 8, n2 ≥ 4, o2 < n2 then r2 ≤ s2.
(Can+) For every p ∈ π with εp−1 = 1 we have sp | n and rp | s or spop - n.

3. Metacyclic factorizations

In this section G is a finite metacyclic group. Moreover we fix the following notation:

π = set of prime divisors of |G| such that G has a normal Hall p′-subgroup,

π′ = π(|G|) \ π,
oG = |InnG(G′π′)|π.

In our first lemma we show that π, π′ and oG are determined by any kernel of G.

Lemma 3.1. Let G = AB be a metacyclic factorization and let m = |A|, s = [G : A], r = rG(A) and
o = oG(A). Then

(1) For every set of primes µ, AµBµ is a Hall µ-subgroup of G.
(2) p ∈ π′ if and only if G′ \ Z(G) has an element of order p if and only if A \ Z(G) has an element of

order p.
(3) G′π′ = Aπ′ and Aπ′ ∩Bπ′ = 1.
(4) π′ = π(m) \ π(r), sπ′ = mπ′ and o = oG.

(5) G = Aπ′ o
(
Bπ′ ×

∏
p∈π ApBp

)
. In particular [Bp′ , Ap] = 1 for every p ∈ π.

Proof. (1) As A is normal in G, AµBµ is a µ-subgroup of G and Aµ′Bµ′ is a µ′-subgroup of G. Moreover
G = AB = AµBµAµ′Bµ′ and hence [G : AµBµ] = |Aµ′Bµ′ |. Thus AµBµ is a Hall µ-subgroup of G.

(2) As G/A is abelian, G′ ⊆ A. Let p ∈ π(|G|). If p - m then ABp′ is a normal Hall p′-subgroup of G
and hence p ∈ π. Suppose otherwise that p | m and let C be the unique subgroup of order p in A. Since C
is normal in G, it follows that G′ \ Z(G) has an element of order p if and only if A \ Z(G) has an element
of order p if and only if C 6⊆ Z(G). Since Aut(C) is cyclic of order p − 1, if p ∈ π and N is a normal Hall
p′-subgroup of G then G = N oP with P a Sylow p-subgroup of G containing C and as [P,C] = 1 it follows
that [G,C] ⊆ [N,C] ⊆ N ∩ C = 1 and hence C ⊆ Z(G). Conversely, if C ⊆ Z(G) then [Ap, Ap′Bp′ ] = 1
because the kernel of the restriction homomorphism Aut(Ap) → Aut(C) is a p-group. As Ap′B normalizes
Ap′Bp′ it follows that the latter is a normal Hall p′-subgroup of G and hence p ∈ π.

(3) Let p ∈ π′, c an element of order p in A and a a generator of A. Since |Aut(〈c〉)| = p−1 and c 6∈ Z(G),
we have that abp = akp for some integer k such that gcd(k, p) = 1. Moreover, k − 1 is coprime with p because

1 6= [c, b] = ck−1. Then Ap =
〈
ak−1
p

〉
⊆ G′ and hence Ap = G′p. Moreover, if g ∈ Ap ∩ Bp \ {1} then

[g,B] = 1 and c ∈ 〈g〉, yielding a contradiction. Thus Ap ∩ Bp = 1. Since this is true for each p ∈ π′, we
have Aπ′ = G′π′ and Aπ′ ∩Bπ′ = 1.

(4) is a direct consequence of (2) and (3).
(5) By (1) and (3), Aπ′Bπ′ = Aπ′ oBπ′ is the unique Hall π′-subgroup of G and hence G = (Aπ′ oB′π′)o

(AπBπ). Moreover, if p ∈ π and c is an element of order p in Ap then c ∈ Z(G) by (2). This implies that
[Bp′ , Ap] = 1 because the kernel of Resp : Aut(Ap) → Aut(〈c〉) is a p-group. Then [Bπ′ , AπBπ] = 1 and
AπBπ =

∏
p∈π ApBp. �
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Next lemma shows that εG is determined by any minimal kernel of G.

Lemma 3.2. If A is a minimal kernel of G then εG = εG(A).

Proof. Let m = mG = |A|, ε = εG(A) and r = rG(A). If m2 ≤ 2 then ε = 1 = εG. Otherwise 4 | r2 and

G′2 =

{
〈ar2〉 , if ε = 1;〈
a2
〉
, if ε = −1.

Then

|G′2| =

{
m2

r2
, if ε = 1;

m2

2 , if ε = −1;

and hence ε = −1 if and only if m2 = 2|G′2| > 2 if and only if εG = −1. �

Let
RG = {rG(A) : A is a minimal kernel of G}.

Next lemma shows that |RG| ≤ 2 and in most cases |RG| = 1.

Lemma 3.3. Let m = mG, n = nG and o = oG. Then the following statements are equivalent:

(1) |RG| > 1.
(2) n2 ≥ 4, m2 ≥ 8, εG = −1, o2 < n2 and RG = { r2 , r} for some r with r2 = m2.
(3) n2 ≥ 4, m2 ≥ 8, εG = −1, o2 < n2, r2 ∈ {m2

2 ,m2} for some r ∈ RG and [G : B]2 = m2

2 for some
metacyclic factorization G = AB with m = |A|.

(4) n2 ≥ 4, m2 ≥ 8, εG = −1, o2 < n2, r2 ∈ {m2

2 ,m2} for some r ∈ RG and [G : B]2 = m2

2 for every
metacyclic factorization G = AB with m = |A|.

Furthermore, suppose that G = AB is a metacyclic factorization satisfying the conditions of (3) and let

a be a generator of A and b be a generator of B and s = [G : B]. Let C =

〈
b
nm

2′
2s

2′ a

〉
. Then G = CB is

another metacyclic factorization with |C| = m and rG(C) 6= rG(A).

Proof. Let ε = εG, o = oG, R = RG and for every p ∈ π let Rp = {rp : r ∈ R}. Fix a minimal kernel A of G
and let r = rG(A).

Let p ∈ π. If εp−1 = 1 then |G′p| =
mp
rp

. Thus in this case |Rp| = 1. Therefore r2′ is constant for

every r ∈ R and hence |R| = |R2|. Moreover, if ε = 1 then G′2 = m2

r2
and hence R2 = { m2

|G′
2|}. In this

case none of the conditions (1)-(4) hold. Otherwise, 4 | rG(A)2 | m2. Thus, if m2 < 8 then rG(A)2 = 4
for every minimal kernel A of G and hence |R| = |R2| = 1, so that again none of the conditions (1)-(4)
hold. Thus in the remainder of the proof we assume that ε = −1 and 8 ≤ m2. Then G′2 = A2 and hence
〈−1 + rG(A)2〉m2

2
= Resm2

2
(TG(A)) = σ−1

G′
2
(InnG(G′2)), which is independent of A. This shows that if R2

contains an element smaller than m2

2 then it only has one element and hence again none of the conditions
(1)-(4) hold. So in the remainder of the proof we assume that R2 ⊆ {m2

2 ,m2}.
Suppose that o2 = n2. Then, by Lemma 3.1.(4), CG(G′π′)2 = A2, and hence 〈−1 + rG(A)2〉m2

=

Resm2
(TG(CG(G′π′)2)) is independent of A. Therefore, in this case |R2| = 1, so that |R| = 1. So again in

this case none of the conditions (1)-(4) hold and in the remainder of the proof we also assume that o2 < n2.
Suppose that n2 < 4. Then none of the condition (2)-(4) holds and as ε = −1, we have n2 = 2. By means

of contradiction suppose that (1) holds. By the previous paragraph R2 = {m2

2 ,m2} and hence G has two
minimal kernels A and C with rG(A)2 = m2 and rG(C)2 = m2

2 . If G = AB and G = CD are metacyclic
factorization of G then A2B2 and C2D2 are Sylow 2-subgroups of G and hence they are isomorphic. However,
by Lemma 2.2.(5), [A2B2 : B2] is either m2 or m2

2 . In the first case A2B2 is dihedral and in the second case
A2B2 is quaternionic. This yields a contradiction because from rG(C)2 = m2

2 it follows that C2D2 is neither
dihedral nor quaternionic.

Thus in the remainder we assume that m2 ≥ 8, n2 ≥ 4, o2 < n2, ε = −1 and R2 ⊆ {m2

2 ,m2}. Moreover,
by the above arguments we have that R ⊆ { r2 , r} for some r with r2 = m2. Thus (1) and (2) are equivalent.

(4) implies (3) is clear.
(3) implies (2). Let G = AB be a metacyclic factorization of G satisfying the conditions of (3). Let

s = [G : B] and r = rG(A). Select generators a of A and b of B and let z = b
nm

2′
2s

2′ , c = za and C = 〈c〉. We
will prove that if G = CB is another metacyclic factorization with |C| = m and rG(C) 6= r, so that (2) holds.
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Indeed, since o2 < n2, we have [z, aπ′ ] = 1. Moreover, [zp′ , ap] = 1 for every p ∈ π. If moreover, p 6= 2 then

[zp, ap] = 1 because [bn, a] = 1. Finally, r2 ∈ {m2

2 ,m2} and hence om2
(−1+r2) = 2. As 4 | n and ab22 = a−1+r2

2

it follows that [z2, a2] = 1. This shows that z ∈ Z(G). As s = [G : B] and [G : A] = n we have bn = asx for

some integer x coprime with m. Then c2 = a
2+sx

m
2′

s
2′ = a2+xs2m2′ = a2+xm2 = a2+m

2 . As 8 | m it follows that
|C| = m. Suppose that ab = at. Then t+1 ≡ r2 mod m2. Let r′ ∈ N with r′2′ = r2′ and {r2, r

′
2} = {m2

2 ,m2}
and let t′ be an integer such that t′ ≡ t mod m2′ and t′ ≡ −1 + r′2 mod m2. As 8 | m we have t′ ≡ t ≡ −1

mod 4 and hence t′ = 1 + 2y for some odd integer y. Then ct
′

= zzt
′−1at

′
= zz2yat

′
= zat

′+ym2 . Moreover,
t′ + ym2 ≡ t′ ≡ t mod m2′ and t′ + ym2 ≡ −1 + r′2 + m2

2 ≡ −1 + r2 ≡ t mod m2. Therefore ct
′

= zat = cb.
This shows that C is a cyclic normal subgroup of G and clearly G = CB is a metacyclic factorization
satisfying the desired condition.

Before proving (1) implies (4) we prove that if G = AB = CD are metacyclic factorizations with |A| =
|B| = m then [G : B]2 = [G : D]2. The assumption ε = −1 implies that G′2 = A2 = C2. As A2B2 and
C2D2 are Sylow 2-groups of G we may assume that they are equal and hence if A2 = 〈a〉 and B = 〈b〉 we
may write c = biaj and d = bkal. Since c2 ∈ C2 = A2 we have n2

2 | i and as 4 | n, necessarily 2 | i and

hence 2 - k. Then, using that rG(A), rG(C) ∈ {m2

2 ,m2} we have that d2 = b2k or d2 = b2kal
m2
2 . In both

cases d4 = b4 and hence D4 = B4. As 4 | n it follows that A2 ∩ B2 = Bn2
2 = Dn2

2 = C2 ∩ D2. Therefore,
[G : B]2 = [A2B2 : B2] = [A2, A2 ∩B2] = [C2 : C2 ∩D2] = [G,D]2, as desired.

(1) implies (4). Suppose that |R| > 1. By the assumptions and the previous arguments we know that
the only condition from (4) which is not clear is that if G = AB is a metacyclic factorization with m = |A|
and s = [G : B] then s2 = m2

2 . So suppose that s2 = m2. Since |R| > 1, there is a second metacyclic
factorization G = CD with |C| = m and {rG(A)2, rG(C)2} = {m2

2 ,m2}. By the previous paragraph
[G : D]2 = [G : B]2 = 1. By symmetry we may assume that rG(A)2 = m2 and rG(C) = m2

2 . As above

we may assume that A2B2 = C2D2 and if A2 = 〈a〉, B2 = 〈b〉, C2 = 〈c〉 and D2 = 〈d〉 then ab = a−1,

cd = c−1+
m2
2 , G′2 = A2

2 = C2
2 , A2 6= C2 and A2 ∩ B2 = C2 ∩ D2 = 1. Write c = biaj and d = bkal with

i, j, k, l ∈ N. Since c2 ∈ A we have that n2

2 | i and as 4 | n2, we have that k is odd and [bi, a] = 1. Thus

b2i = c2a−2j ∈ A2 ∩ B2 = 1. Then c2 = a2j and as C2 = A2, necessarily j is odd. However, from b2i = 1,

[bi, a] = 1 and 8 | m we have bi2a
(−1+

m2
2 )j

2 = b
(−1+

m2
2 )i

2 a
(−1+

m2
2 )j

2 = c
−1+

m2
2

2 = cd2 = bi2a
−j
2 and hence 2 | j, a

contradiction. �

In our next result we show a way to decide if a factorization of G is minimal and we prove that the
following algorithm transforms a metacyclic factorization of G into a minimal one.

Algorithm 1. Input: A metacyclic factorization G = AB of a finite group G.
Output: a, b ∈ G with G = 〈a〉 〈b〉 a minimal metacyclic factorization of G.

(1) m := |A|, n := [G : A], s := [G : B],
(2) a := some generator of A, b := some generator of B, and y ∈ N with bn = ay.
(3) r := rG(A), ε := εG(A) and o = oG(A).
(4) for p ∈ π(r) with εp−1 = 1

(a) if sp - n then b := bap and s := sp′np.

(b) if rp - s, spop | n and t ∈ N satisfy a
bp
p = atp, compute x ∈ N satisfying xS

(
t
n
sp | sp

)
≡ r − y

mod mp and set a := b
n
sp
p ap′a

x
p, m := sp

m
rp

, n := n
rp
sp

, and

(r, ε) :=

{
(4r2′ ,−1), if 8 | m, sp = 2, and r2 = m2

2 ;

(rp′sp, 1), otherwise.

(5) If ε = −1, 4 | n, 8 | m, o2 < n2 and r2 - s then a := b
m

2′n
2s

2′ a and r := r2′s2

(6) If ε = −1 and s2 = r2n2 then b := ba2 and s := s
2 .

(7) Return (a, b).

Proposition 3.4. Let G = AB be a metacyclic factorization and let m = |A|, n = [G : A], s = [G : B] and
T = TG(A). Then G = AB is minimal as metacyclic factorization of G if and only if T is (n, s)-canonical.

Furthermore, if the input of Algorithm 1 is a metacyclic factorization of G and its output is (a, b) then
G = 〈a〉 〈b〉 is a minimal metacyclic factorization of G.
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Proof. Let (r, ε, o) = [TG(A)]. By Lemma 3.1, π′ = π(m) \ π(r). Fix y, t ∈ N with bn = ay and ab = at.
Then s = gcd(t,m), gcd(t,m) = 1, r2′ = gcd(m2′ , t − 1) and r2 = gcd(m2, t − ε). For every prime p let
Gp = ApBp.

Claim 1. If condition (Can+) holds then A is a minimal kernel of G.
Suppose that condition (Can+) holds and let C be kernel of G. We want to prove that |C| ≥ m and for

that it is enough to show that |Cp| ≥ mp for every prime p. This is obvious if mp = 1, and it is a consequence
of Lemma 3.1.(3), if p ∈ π′. So we suppose that p ∈ π and mp 6= 1. Hence p | r.

Suppose first that εp−1 = −1. Then p = 2 and A2
2 = G′2 ⊆ C2. However C2 6⊆ A2

2 because G2/A
2
2 is not

cyclic. Therefore |C2| ≥ 2|A2
2| = m2.

Suppose otherwise that εp−1 = 1. Then G′p = A
rp
p and |G′p| =

mp
rp

. Assume that rp | sp. Then

Gp/G
′
p = (Ap/G

′
p)×(BpG

′
p/G

′
p) and rp = |Ap/G′p| ≤ np = [BpG

′
p : G′p]. As (Gp/G

′
p)/(Cp/G

′
p) ∼= Gp/Cp

is cyclic, necessarily rp | [Cp : G′p] and hence mp | |Cp|, as desired. Assume otherwise that rp - sp. By
condition (Can+) we have sp | np and spop - np. In particular p | op. By Lemma 3.1.(3), Cπ′ = Aπ′ and
thence Cp ⊆ CGp(Aπ′)p = ApB

op
p . Using again that Gp/Cp is cyclic and p | op, we must have Cp =

〈
bxpap

〉
for x ∈ N with op | x and x ≤ n. Let R ∈ N such that a

bxp
p = aRp . Then R satisfies the hypothesis

of Lemma 2.1.(2c) and hence vp

(
S
(
R | nxp

))
= vp(n) − vp(x) ≤ vp(n) − vp(o) < vp(s) = vp(yxp′) and

therefore vp

(
yxp′ + S

(
R | nxp

))
= vp(n) − vp(x). Then |Cp| =

np
xp
|(bxpap)

np
xp | =

np
xp

∣∣∣∣∣ayxp′+S
(
R|npxp

)
p

∣∣∣∣∣ = mp.

This finishes the proof of Claim 1.

Claim 2. If TG(A) is (n, s)-canonical then for every metacyclic factorization G = CD with |C| = m one
has rG(C) ≥ r and |D| ≤ |B|.

If rG(C) < r then, by Lemma 3.3, m2 ≥ 8, n2 ≥ 4, ε = −1, o2 < n2, rG(C)2 = m2

2 = s2 and r2 = m2, in
contradiction with the second part of condition (Can–). Thus rG(C) ≥ r.

To prove that |D| ≤ |B| we show that |Dp| ≤ |Bp| for each prime p. This is clear if p - m and a consequence
of Lemma 3.1.(4) if p ∈ π′. Otherwise p | r. Since both Gp and CpBp are Sylow p-subgroups of G we may
assume that Gp = CpDp.

Assume first that εp−1 = 1. Then by assumption sp | np. Let d = bxpa
y
p be a generator of Dp and

let R ∈ N such that a
bxp
p = aRp . The assumption εp−1 = 1 implies that R satisfies the hypothesis of

Lemma 2.1.(1a) and hence mp | S
(
R | mp

np
sp

)
and from (2.1) we deduce that d

mpnp
sp = a

yS
(

(1+rp)x|mp
np
sp

)
p = 1

and hence |Dp| ≤ mpnp
sp

= |bp|. Suppose otherwise that εp−1 = −1, i.e. p = 2 and ε = −1. Then

C2
2 = G′2 = A2 and C2 ∩ D2 ⊆ Z(G2) ∩ C2 = Z(G2) ∩ C2

2 = Z(G2)A = A
m2
2 and hence |C2 ∩ D2| ≤ 2.

Thus |D2| = [D2 : C2 ∩ D2] |C2 ∩ D2| = [G2 : C2] |C2 ∩ D2| ∈ {n2, 2n2}. Similarly, |B2| ∈ {n2, 2n2}. If
|B2| = 2n2 then |D2| divides |B2| as desired. Suppose otherwise that |B2| = n2. Then m2 = s2 and hence
m2 divides r2n2

2 , by the hypothesis (Can–) and Lemma 2.2.(5). If D2 ⊆
〈
a, b22

〉
then C2 = 〈b2ax2〉 for some

integer x and hence n2 = 2 because C2
2 =

〈
a2

2

〉
. Then D2 ⊆ 〈a2〉 so that D2 is normal in G2 and hence〈

a2
2

〉
= C2

2 = [D2, C2] ⊆ C2 ∩D2 ⊆
〈
a
m2
2

2

〉
⊆
〈
a2

2

〉
. Then m2 = 4 and G2 is dihedral of order 8. Then every

metacyclic factorization of G2 is of the form 〈a2〉 〈c〉 with |c| = 2. Thus |D2| = 2 = |b2|, as wanted. Assume

otherwise that D2 6⊆
〈
a2, b

2
2

〉
. Then D2 = 〈b2ax2〉 for some integer x and let R ∈ N such that ab22 = aR2 . The

hypothesis ε = −1 implies that R satisfies the hypothesis of Lemma 2.1.(2a). Since m2 divides r2n2

2 , we get

v2(S (R | n2)) = v2(r2) + v2(n2)− 1 ≥ v2(m2) and hence (b2a
x
2)n2 = a

xS(−1+r2|n2)
2 = 1. Then |D2| = n2, as

desired. This finishes the proof of Claim 2.

The necessary part in the first statement of the proposition follows from claims 1 and 2.

Claim 3. If p | r, εp−1 = 1 and sp - np then [G : bap] = sp′np < s.

First of all n = |bapA| and hence n divides |bap|. Using (2.1) we have (bap)
n = ayp′a

y+S(t|n)
p and vp([G :

〈bap〉]) = vp(S (t | n)) = vp(n) < vp(s) = vp(y), by Lemma 2.1.(1a) and the assumption. Thus |bap| = n m
sp′np

and hence [G : bap] = sp′np. This finishes the proof of Claim 3.
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By Claim 3, if the first part of (Can+) fails then G = AB is not minimal because G = A 〈bap〉 is a
factorization with [G : b] > [G : 〈bap〉]. Moreover, the factorization G = A 〈bap〉 satisfies the first part of
condition (Can+) and hence after step (4a) of Algorithm 1, the factorization G = 〈a〉 〈b〉 satisfies the first
part of (Can+) for the prime p.

Claim 4. Suppose that p | r, εp−1 = 1, sp | n, rp - s and spop | n. Let R ∈ N with a
b

n
sp
p
p = aR. Then

there is an integer x such that r − y ≡ xS (R | sp) mod mp. This justify the existence of x in step (4)

of Algorithm 1. Let c = b
n
sp
p ap′a

x
p and C = 〈c〉. Then G = CB is a metacyclic factorization of G with

|C| = m
sp
rp
< |A|. Moreover,

(rG(C), εG(C)) :=

{
(4r2′ ,−1), if 8 | m, sp = 2, and r2 = m2

2 ;

(rp′sp, 1), otherwise.

The assumption spop | np implies that op | n
sp

and hence [b
n
sp
p , aπ′ ] = 1. As also [bp, aπ\{p}] = 1 we

deduce that [b
n
sp
p , ap′ ] = 1. On the other hand, since rp - sp, vp(y) = vp(s) < vp(r) and therefore vp(r −

y) = vp(s) = vp(S (t | sp)), by Lemma 2.1.(1a). Therefore there is an integer x coprime with p such that

r − y ≡ xS (R | sp) mod mp. Using (2.1) we have csp = bnpa
sp
p′ a

xS(R|sp)
p = a

sp
p′ a

y+xS(R|sp)
p = a

sp
p′ a

r
p. Then

G′p′ ⊆ 〈ap′〉 ⊆ C and G′p =
〈
arp
〉
⊆ C. Thus G′ ⊆ C and hence G = CB is a metacyclic factorization of G

with |C| = sp|ap′ ||arp| = m
sp
rp
< m = |A|. As Cp′ = Ap′ , we have rG(C)p′ = rG(A)p′ = rπ′ . If εG(C)p−1 = 1

then
mp
rp

= |G′p| =
|Cp|

rG(C)p
=

mpsp
rprG(C)p

and hence in this case rG(C) = rp′sp. Otherwise, i.e. if p = 2 and

εG(C) = −1 then 2|C2| ≤ s2 ≤ |C2| and 4 ≤ rG(C)2 ≤ |C2| = m2s2
r2

= 2|G′2| = 2m2

r2
and hence s2 = 2,

|C2| = 4 = rG(C)2 and r2 = m2

2 . Conversely, if s2 = 2 and r2 = m2

2 then |C2| = 4 and hence rG(C)2 = 4.
Moreover, as G2 is not commutative then εG(C) = −1. This finishes the proof of Claim 4.

Claim 4 shows that if the first part of (Can+) holds but the second one fails then G = AB is not
minimal. It furthermore the parameters associated to the factorization G = CB, i.e. |C|, [G : C], [G :
B], rG(C), εG(C), oG(C), satisfy condition (Can+) for the prime p and hence, after step (4b) of Algorithm 1,
the current factorization G = 〈a〉 〈b〉 satisfies this condition. Moreover, if εG(C) = 1 then rp(C) = sp ≤ np
and condition (C+) holds for the prime p. Thus when the algorithm finishes the loop in step (4), the
metacyclic factorization satisfies condition (Can+) and hence the current value of 〈a〉 is a minimal kernel of
G by Claim 1.

Observe that the modification of a and b in steps (4a) and (4b) for some prime p does not affect the
subsequent calculations inside the loop. Indeed, suppose that p and q are two different divisors of r with
εp−1 = εq−1 = 1, and the prime p has been considered before the prime q in step (4). This has affected
a and b which have been transformed by first transforming b into d = bap and then transforming a into
c = dpap′a

x
p = bpap′a

1+x
p . In principal we should recalculate the natural number y computed in step (2)

to a new y′. However, as p ∈ π, [bp′ , ap] = [bq′ , ap] = 1 and hence ap′ = cp′ and bp′ = dp′ . Therefore
dq = cyq and hence y′ ≡ y mod mq. Therefore when in step (4b) for the prime q we compute x satisfying if
r − y ≡ xS (R | sq) ≡ mod mq we also have r − y′ ≡ xS (R | sq) mod mq.

By Lemma 3.3, if the second part of condition (Can–) is satisfied then rG(A) = rG. Otherwise, rG(A) >
rG, and hence the factorization G = AB is not minimal, However, after step (5) the factorization G = 〈a〉 〈b〉
satisfy both |a| = mG and rG(〈a〉) = rG. In the remainder of the algorithm the kernel 〈a〉 is not modified
and hence this is going to be valid in the remainder of the algorithm.

Finally suppose that the first part of (Can–) fails, so that p = 2, ε = −1 and s2 = r2n2. Then 4 | r and
〈t〉m2

= 〈−1 + r2〉m2
. Moreover, by Lemma 2.2.(5), we have that s2 ∈ {m2

2 ,m2} and m2 | r2n2. Therefore

s2 = m2 = r2n2. Then v2(S (t | n2)) = v2(r) + v2(n) − 1 = v2(m) − 1, by Lemma 2.1.(2a). As in the
proof of Claim 3, we use the metacyclic factorization of G = A 〈ba2〉. If G = AB is minimal then we have
n|(ba2)n| = |ba2| ≤ |b| = n|as| = nms . Therefore |(ba2)n| ≤ m

s . Using (2.1) once more and [b2′ , a2] = 1,

we obtain (ba2)n = aya
S(t|n2)
2 = ay2′a

m2
2

2 . Thus |(ba2)n| = 2ms and hence |ba2| = 2mss = 2|B|, contradicting
the minimality. Thus G = AB is not minimal. Moreover, the new metacyclic factorization satisfies (Can–)
because, |ba2|2 = 2|b|2 and hence if s′ = [G : 〈ba2〉] then s′2 = m2

2 6= m2 = r2n2. �
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In order to prove that the last entry of MCINV(G) is well defined and prove Theorem A we need one
more lemma which is inspired in Lemmas 5.5 and 5.7 of [Hem00].

Lemma 3.5. Let p be a prime and consider the group P = Gm,n,s,ε+r with m and n powers of p, r and s
divisors of m and ε ∈ {1,−1} satisfying the following conditions: p | r, m | rn, if 4 | m then 4 | r, if ε = 1
then m | rs and if ε = −1 then 2 | n, 4 | m and m | 2s. Let o be a divisor of n and N = 〈a, bo〉. Denote

w =


min(o, mr ,max(1, sr ,

so
n )), if ε = 1;

1, if ε = −1 and , o | 2 or m | 2r;
m
2r , if ε = −1, 4 | o < n, 4r | m, and if s 6= nr then 2s = m < nr;
m
r , otherwise.

If y is an integer coprime with p then the following conditions are equivalent:

(1) There are c ∈ N and d ∈ byN such that P = 〈c, d〉, |c| = m, dn = cs and cd = cε+r.
(2) y ≡ 1 mod w.

Proof. Observe that N is the unique subgroup of G of index o containing a. We will make a wide use of (2.1)
and Lemma 2.1, sometimes without specific mention. We consider separately the cases ε = 1 and ε = −1.

Case 1. Suppose ε = 1.
(1) implies (2). Suppose that c and d satisfy the conditions of (1). If w = 1 then obviously (2) holds. So

we may assume that w 6= 1 and in particular p | o and pr | m. The first implies that N ⊆ 〈a, bp〉 and the
second that P/ 〈ap, bp〉 is not cyclic. Therefore c 6∈ 〈ap, bp〉 and hence 〈c〉 = 〈bxva〉 with o | v | n and p - x.
Write d = by1az with y1, z ∈ Z. From the assumption d ∈ byN we have that y1 ≡ y mod o and hence y ≡ y1

mod w. Therefore, it suffices to prove that y1 ≡ 1 mod w. From cd = c1+r we have

bxvaz(1−(1+r)xv)+(1+r)y1 = (bxva)b
y1az = (bxva)1+r = bxvabxvraS((1+r)xv|r).

Then n | vr and bxvr = axs
vr
n . Thus

z(1− (1 + r)xv) + (1 + r)y1 − 1 ≡ xsvr
n

+ S ((1 + r)xv | r) mod m.

This implies that that r divides xsvrn , since r divides m. As r is coprime with x, it follows that n divides sv.
Moreover, (1 + r)xv ≡ 1 mod rv, by Lemma 2.1.(1a), and hence S ((1 + r)xv | r) ≡ r mod rv. As r, v,m
and s are powers of p we deduce that

(1 + r)y1 ≡ 1 + r mod min(m, rv,
svr

n
).

Using Lemma 2.1.(1b) it follows that y1 ≡ 1 mod min(mr , v,
sv
n ).

Suppose that y1 6≡ 1 mod w. Then

min
(m
r
, o,

so

n

)
≤ min

(m
r
, v,

sv

n

)
< w = min

(m
r
, o,max

(
1,
s

r
,
so

n

))
and hence s

r >
(
1, son

)
and m

r ≥ w = min
(
o, sr
)
> min

(
m
r , v,

sv
n

)
. Thus

s

r
≥ w = min

(
o,
s

r

)
> min

(
v,
sv

n

)
≥ min

(
o,
so

n

)
.

Since n | vr it follows that min(v, svn ) < s
r ≤

sv
n and hence o ≤ v = min(v, vsn ) < min(o, sr ), a contradiction.

(2) implies (1). We now suppose that y ≡ 1 mod w and we have to show that there is c ∈ N and d ∈ byN
satisfying the conditions in (1). If y ≡ 1 mod o then bN = byN and hence c = a and d = b satisfy the
desired condition. If (1 + r)y ≡ 1 + r mod m then ab

y

= a1+r and hence c = ay and by satisfy the desired
conditions. So we suppose that y 6≡ 1 mod o and (1 + r)y 6≡ 1 + r mod m. The first implies that w < o
and the second that y − 1 is not multiple of om(1 + r) = m

r , by Lemma 2.1.(1b) and hence w < m
r . Thus

w = max(1, sr ,
os
n ) < min(o, mr ).

By Lemma 2.1.(1b) we have (1 + r)y = 1 + r(1 + xu) with p - x, u a power of p and vp(w) ≤ vp(u) =
vp(y − 1) < vp(

m
r ) ≤ vp(s). Moreover, if u = 1 then p - 1 + x. Let c1 = bx

nu
s a. We now prove that

|c1| = m. Observe that nu
s ≥

nw
s ≥ o. Therefore c1 ∈ N . Moreover, as vp(u) < vp(s) it follows that

|c1 〈a〉 | = s
u and c

s
u
1 = a

xs+S
(

(1+r)x
nu
s | su

)
. If u 6= 1 then vp(r) ≥ vp(

s
w ) ≥ vp(

s
u ) = vp(S

(
(1 + r)x

nu
s | su

)
) =

vp(xs+ S
(
(1 + r)x

nu
s | su

)
) and therefore G′ = 〈ar〉 ⊆ 〈c1〉 and |c1| = m, as desired. Otherwise, i.e. if u = 1

then w = 1 and hence s ≤ r and p | o | ns . Then xs + S
(
(1 + r)x

nu
s | s

)
≡ s(x + 1) 6≡ 0 mod pr because
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s ≤ r and p - x+ 1. Therefore also in this case vp(r) ≤ vp(xs+ S
(
(1 + r)x

nu
s | s

)
) and hence G′ ⊆ 〈c1〉 and

|c1| = m, as desired.
Since (1 + r)x

nu
s ≡ 1 mod rnus we have S

(
(1 + r)x

nu
s | r

)
≡ r mod rnus . Therefore (1 + r)y − 1− xru−

S
(
(1 + r)x

nu
s | r

)
≡ 0 mod rnu

s . Moreover, vp(1 − (1 + r)x
nu
s ) = vp(r

nu
s ), and hence there is an integer z

satisfying

z(1− (1 + r)x
nu
s ) + (1 + r)y ≡ 1 + xru+ S ((1 + r)xu | r) mod m.

Let d = byaz ∈ byN . Using that u ≥ w ≥ s
r we have

cd1 = (bx
nu
s a)b

yaz = bx
nu
s az(1−(1+r)x

nu
s )+(1+r)y = bx

nu
s a

1+xru+S
(

(1+r)x
nu
s |r

)
= c1+r

1 ,

On the other hand

dn = (byaz)n = asy+zS((1+r)y|n)

and

cs1 = (bx
nu
s a)s = a

xus+S
(

(1+r)x
nu
s |s

)
.

if s ≥ n then o > w = max( son ,
s
r ) ≥ so

n ≥ o, a contradiction. Therefore, s is a proper divisor of n and hence

vp(sy+ zS ((1 + r)y | n)) = s. Then dn and cs1 are elements of 〈a〉 of the same order. Therefore bn = cks for
some integer k coprime with p. Then c = ck1 and d satisfy the conditions of (1).

Case 2. Suppose that ε = −1.
(1) implies (2). Suppose that c and d = byaz satisfy the conditions of (1). Then 4 | r and G′ =

〈
a2
〉

=
〈
c2
〉
.

As in Case 1 we may assume that w 6= 1. Then both o and m
r are multiple of 4 and we must prove, on the

one hand that y ≡ 1 mod m
2r and, on the other hand that y ≡ 1 mod m

r , if one of the following conditions
hold: o = n or, s = m 6= nr, or 2s = m = nr. From 4 | o and G/ 〈c〉 being cyclic we deduce 〈c〉 = 〈bxva〉
with o | v | n and 2 - x. From G′ =

〈
a2
〉

=
〈
c2
〉

it follows that n
2 | v so that v is either n or n

2 . If v = n then

〈c〉 = 〈a〉. Therefore a−1+r = ad = a(−1+r)y and hence (−1 + r)y−1 ≡ 1 mod 2m. Then y ≡ 1 mod m
r by

Lemma 2.1.(2b). This proves the result if o = n because in that case v is necessarily n.
Suppose otherwise that v = n

2 . Then we distinguish the cases m < nr and m = nr.

Assume that m < nr. Then, as 4 | o | v we have om(−1 + r) = max
(
2, mr

)
≤ n

2 = v and hence bv is
central in G. Then, having in mind that 4 | r and m | 2s, we have

bxva(−1+r)y = (bxva)b
yaz = (bxva)−1+r = bxva(bxva)r−2 = bxvar−1+xs( r2−1) = bxva−1+s+r.

Therefore (−1 + r)y ≡ −1 + r + s mod m and in particular (−1 + r)y ≡ −1 + r mod s, since s | m. Using
Lemma 2.1 once more we deduce that y ≡ 1 mod m

2r and if s = m then y ≡ 1 mod m
r .

Suppose otherwise that m = nr. Then, from Lemma 2.1.(2a) we have v2((−1 + r)v− 1) = v2(r) + v2(v) =
v2(r) + v2(n) − 1 = v2(m2 ) so that ab

v

= a1+m
2 and (bxva)2 = a2+s+m

2 and hence (bxva)4 = a4. As 4 | o it
follows that (bxva)n = an. On the other hand, as y is odd, it follows that v2((−1 + r)y + 1) = v2(r) ≥ 2,
by Lemma 2.1.(2c). Therefore, v2(S ((−1 + r)y | n)) = v2(rn) − 1 = v2(m) − 1, by Lemma 2.1.(2a). Then
S ((−1 + r)y | n) ≡ m

2 mod m an hence, having in mind that 8 | m2 | s we deduce that as = cs = dn =

ays+zS((−1+r)y|n) = as+z
m
2 . Therefore z is even. On the other hand from cd = c−1+r and having in mind

that (−1 + r)v − 1 ≡ m
2 mod m and z is even, we obtain

bxva(−1+r)y = (bxva)b
yaz = (bxva)−1+r = bxva(bxva)r−2 = bxva(axs+2+m

2 )
r
2−1 = bxva−1+s+r+m

2 .

Therefore (−1 + r)y ≡ −1 + r + s + m
2 mod m. Again, from m | 2s and Lemma 2.1.(2b) we deduce that

y ≡ 1 mod m
2r and if s = m

2 then y ≡ 1 mod m
r .

(2) implies (1). Suppose that y ≡ 1 mod w. As y is odd, if o | 2 then b ∈ byN and hence a and b satisfy
condition (1). So we assume from now on that 4 | o. In particular 4 | n. Suppose that m | 2r, i.e. r is either
m or m

2 and let c = ay and d = bya2. In this case b2 is central in P and hence cd = cb = c−1+r and applying

statements (2a) and (2c) of Lemma 2.1 we obtain dn = ays+S((−1+r)y|n) = ays = cs. Hence c and d satisfy
the conditions of (1).

Thus from now on we assume that 4 divides both o and m
r . Suppose that y ≡ 1 mod m

r . Then ab
y

= ab =

a−1+r because b
m
r is central in P . Moreover, as m | 2s and y is odd we have (by)n = asy = as. Therefore

c = a and d = by satisfy condition (1) and this finishes the proof of the lemma if w = m
r and it also proves

that for w = m
2r we may assume that y 6≡ 1 mod m

r . So suppose that w = m
2r and y 6≡ 1 mod m

r . Then
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y ≡ 1 + m
2r mod m

r , o < n and either m = s = nr or 2s = m < nr. Let c = b
n
2 a and d = by. Then, in both

cases, c2 = a2+m
2 and, as m

2 is multiple of 4 we have that G′ =
〈
a2
〉

=
〈
c2
〉
, |c| = m and cs = as. Moreover,

c−1+r = (b
n
2 a)−1+r = b

n
2 a(b

n
2 a)r−2 = b

n
2 aa(2+m

2 )( r2−1) = b
n
2 a−1+r+m

2 = b
n
2 a(−1+r)(1+m

2 ) = (b
n
2 a)b

1+m
2r = cd

and

dn = as(1+m
2r ) = as = cs.

Then c and d satisfy the conditions of (1). �

Theorem 3.6. Let m,n, s ∈ N with s | m and let T and T̄ be (n, s)-canonical cyclic subgroups of Um.
Set [r, ε, o] = [T ], [r̄, ε̄, ō] = [T̄ ], π = π(r) ∪ (π(n) \ π(m)), π̄ = π(r̄) ∪ (π(n) \ π(m)), m′ = [T, n, s] and
m̄′ = [T̄ , n, s].

Then the following statements are equivalent.

(1) Gm,n,s,T and Gm,n,s,T̄ are isomorphic.

(2) Resm′(T ) = Resm̄′(T̄ ).
(3) π = π̄, Resmπ′ (Tπ′) = Resmπ′ (T̄π′) and Resmπ′m′

p
(Tp) = Resmπ′m′

p
(T̄p) for every p ∈ π.

Proof. Let G = Gm,n,s,T and Ḡ = Gm,n,s,T̄ . To distinguish the generators a and b in the presentation of

G and Ḡ we denote the latter by ā and b̄. We also denote A = 〈a〉, B = 〈b〉, Ā = 〈ā〉 and B̄ =
〈
b̄
〉
. The

hypothesis warrants that G = AB and Ḡ = ĀB̄ are minimal metacyclic factorizations by Proposition 3.4. In
particular, |A| = |Ā| = m = mG = mḠ, [G : A] = [Ḡ : Ā] = n = nG = nḠ, [G : B] = [Ḡ : B̄] = s = sG = sḠ,
T = TG(A) and T̄ = TḠ(Ā).

(2) implies (3) Suppose that statement (2) holds. Then, using that π(m) = π(m′) = π(m̄′), we have
Resp(T ) = Resp(Resm′(T )) = Resp(Resm′(T̄ )) = Resp(T̄ ) for every prime p dividing m. Thus, π′ = π̄′

and, as mπ′ = m′π, we have Resmπ′ (Tπ′) = Resm′
π′

(T )π = Resm′
π′

(T̄ )π = Resmπ′ (T̄π′) and Resmπ′m′
p
(Tp) =

Resm′
π′∪{p}

(T )p = Resm′
π′∪{p}

(T̄ )p = Resmπ′m′
p
(T̄p) for every p ∈ π(m) \ π′.

(1) implies (2). Suppose that G ∼= Ḡ. Then, as T and T̄ are (n, s)-canonical they yield the same
parameters, i.e. π′ = π̄′, o = ō, etc.

Let f : Ḡ → G be an isomorphism and let c = f(ā), d = f(b̄), C = 〈c〉 and D = 〈d〉. Then Cπ′ =
f(Ḡ′π′) = G′π′ = Aπ′ , by Lemma 3.1.(3). Furthermore, Cπ′Dπ′ = Aπ′Bπ′ because AB and ĀB̄ are the
unique Hall π′-subgroup of G and Ḡ, respectively. Then Resmπ′ (T ) = TG(Aπ′) = TG(Cπ′) = Resmπ′ (T̄ ). As

Resmπ (Tπ′) = Resmπ (T̄π′) = 1 it follows that Resm′(Tπ′) = Resm′(T̄π′). Since T and T̄ are cyclic, it remains
to prove that Resm′(Tp) = Resm′(T̄p) for every p ∈ π. Moreover, as G and Ḡ have the same parameters
ε and r we have Resmp(Tp) = Resmp(T̄p) =

〈
εp−1 + rp

〉
mp

. Denote R = εp−1 + rp and select generators

t of Resmπ′m′
p
(Tp) and t̄ of Resmπ′m′

p
(Tp) such that Resmp(t) = Resmp(t̄)[R]mp . We already know that

Resm′
π′

(T ) = Resm′
π′

(T̄ ) and in particular, there is an integer x coprime with p such that t̄ = tx mod mπ′ .

If op ≤ 2 then Resm′
π′

(t) = Resm′
π′

(t̄) and if om′
p
(R) ≤ 2 then Resm′

p
(tx) = [Rx]m′

p
= [R]mp = Resm′

p
(t̄).

In both cases Resmπ′m′
p
(T ) = 〈t〉 = 〈tx〉 = Resmπ′m′

p
(T̄ ), as desired. Therefore, in the remainder we may

assume that both op and om′
p
(R) are greater than 2 and, in particular, om′

p
(R) =

m′
p

rp
= Resm′

p
(T ) and this

number coincides with the w in Lemma 3.5.
On the other hand ApBp and f(ĀpB̄p) = CpDp are Sylow p-subgroup of G and hence they are conju-

gate in G. Composing f with an inner automorphism of G we may assume that CpDp = ApBp. Then
〈c, dop〉 = f(

〈
ā, b̄op

〉
) = f(CḠp(Ḡ′π′)) = CGp(G′π′) = 〈a, bop〉. By Lemma 3.5 we have d = byg for

some g ∈ CGp(G′π′) and y ≡ 1 mod w. Thus Resmπ′ (t̄) = Resmπ′ (t
y) and Resm′

p
(t̄) = Resm′

p
(t) =

Resm′
p
(R) = Resm′

p
(Ry) = Resm′

p
(ty), because y ≡ 1 mod om′

p
(R). Thus Resm′

π′m
′
p
(T̄p) = Resm′

π′m
′
p
(t̄) =

Resm′
π′m

′
p
(ty) = Resm′

π′m
′
p
(Tp), as desired.

(3) implies (1) Suppose that the conditions of (3) holds. We may assume that a = ā and take generators t of

T and t̄ of T̄ so that G = 〈a, b〉, Ḡ =
〈
a, b̄
〉
, with |a| = m, [G : 〈a〉] = n, bn = as, ab = at, ab̄ = at̄. Moreover,

from the assumption we may assume abπ′ = ab̄π′ and for every p ∈ π we have Resmπ′m′
p
(Tp) = Resmπ′m′

p
(T̄p).

In particular, for every p ∈ π, we have
〈
εp−1 + rp

〉
m′
p

= Resm′
p
(Tp) = Resm′

p
(T̄p) =

〈
ε̄p−1 + r̄p

〉
. Since

rp | m′p | mp it follows that ε = ε̄ and rp = r̄p. Thus r = r̄.
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We claim that for every p ∈ π we can rewrite Gp = 〈ap, bp〉 as Gp = 〈cp, dp〉 with cp ∈
〈
ap, b

op
p

〉
= CGp(aπ′)

and dp ∈ byCGp(aπ′) such that |cp| = mp, c
dp
p = c

Rp
p , a

dp
π′ = a

b̄p
π′ and d

np
p = c

sp
p .

Indeed, let p ∈ π. The assumption
〈

Resmπ′m′
p
(tp)

〉
=
〈

Resmπ′m′
p
(t̄p)

〉
implies that there is an integer

y coprime with |Resmπ′m′
p
(tp)| such that Resmπ′m′

p
(t̄p) = Resmπ′m′

p
(tp)

y. If op ≤ 2 or omp(R) ≤ 2 then,

as in the proof of (1) implies (2) we have that Resmπ′mp(t) = Resmπ′mp(t̄) so that cp = ap and dp = bp

satisfies the desired conditions. So assume that op > 2 and omp(R) > 2. From the equality a
bp
p = a

b̄p
p we

deduce that Ry ≡ R mod m′p and this implies that y ≡ 1 mod w where w = om′
p
(R) =

m′
p

rp
and again

this w coincides with the one in Lemma 3.5. Applying Lemma 3.5 we deduce that 〈ap, bp〉 contain elements

cp ∈
〈
ap, b

o
p

〉
= CGp(aπ′) and dp ∈ byCGp(aπ′) such that 〈ap, bp〉 = 〈cp, dp〉, |cp| = mp, a

dp
π′ = a

byp
π′ = a

b̄p
π′ ,

c
dp
p = c

Rp
p and d

np
p = c

sp
p , as desired. This finishes the proof of the claim.

For every p ∈ π let cp and dp as in the claim and set c = aπ′
∏
p∈π cp and d = bπ′

∏
p∈π dp we deduce that

G = 〈c, d〉 with |c| = m, dn = cs and cd = at̄. Therefore G ∼= Ḡ. �

The following corollary is a direct consequence (1) implies (2) of Theorem 3.6. It shows that ∆G is well
defined.

Corollary 3.7. If G = AB = CD are two minimal factorizations of G then ∆(AB) = ∆(CD).

4. Proofs of the main results

Proof of Theorem A. Let G and Ḡ be finite metacyclic groups and let G = AB and Ḡ = ĀB̄ be minimal
metacyclic factorizations of G and Ḡ respectively. Denote m = |A|, m̄ = |Ā|, n = [G : A], n̄ = [Ḡ : Ā],
s = [G : B], s̄ = [Ḡ : B̄], T = TG(A) and T̄ = TḠ(Ā). We also denote m′ = [T, n, s], m̄′ = [T̄ , n̄, s̄],
∆ = Resm′(T ) and ∆̄ = Resm̄′(T̄ ). Then G ∼= Gm,n,s,T , Ḡ ∼= Gm̄,n̄,s̄,T̄ , m = mG, n = nG, s = sG, n̄ = nḠ,

m̄ = mḠ, s = sḠ, T is (n, s)-canonical and T̄ is (n̄, s̄)-canonical. Moreover, ∆ = ∆G and ∆̄ = ∆Ḡ.
If G ∼= G′ then m = m̄, n = n̄, s = s̄ and, by Theorem 3.6 we have ∆ = ∆̄. Thus MCINV(G) =

MCINV(Ḡ).
Conversely, if MCINV(G) = MCINV(Ḡ) then m = |A| = mG = mḠ = |Ā| = m̄ and similarly n = n̄ and

s = s̄. Moreover, Resm′ [T ] = ∆G = ∆Ḡ = Resm̄′(T̄ ). Then G ∼= Ḡ by Theorem 3.6. �

In the remainder of the section we use the notation in Theorem B.

Proof of (1) implies (2) in Theorem B. Suppose that (m,n, s,∆) = MCINV(G) for some metacyclic group G
and let G = AB be a minimal factorization of G. Then m = mG = |A|, n = nG = [G : A], s = sG = [G : B]
and if T = TG(A) then ∆ = ∆(AB) = Resm′(T ). In particular, s | m, T is a cyclic subgroup of Un,sm ,
[T ] = [∆] and m′ν = mν . Moreover, ν = π(m′) \ π(r) and sν = mν , by Lemma 3.1. Moreover, |∆| divides
n, because it divides |T |, which in turn divides n. Then conditions (2a) and (2b) of Theorem B hold. By
Lemma 2.2, Lemma 3.1 and Lemma 3.2 we have π = πG, π′G = ν, o = oG, ε = εG and r = rG. Let p ∈ π(r).
If εp−1 = 1 then

mp
rp

= |Resmp(Tp)| ≤ np and if ε = −1 then max(2, m2

r2
) = |Resm2(T2)| ≤ |T2| ≤ n2 and

m2 ≤ 2s2. As the metacyclic factorization G = AB is minimal, T is (n, s)-canonical by Proposition 3.4.
Then the remaining conditions in (2c) and (2d) follow. �

Proofs of Theorem C and (2) implies (1) in Theorem B. Suppose that m,n, s and ∆ satisfy the conditions
of (2) in Theorem B. By Remark 1.2 there is a cyclic subgroup T of Un,sm with Resm′(T ) = ∆ and [T ] = [∆].
Let t ∈ N with T = 〈t〉m. Let G = Gm,n,s,t and denote A = 〈a〉 and B = 〈b〉. We will prove that G = AB
is a minimal factorization of G that m = |A|, n = [G : A], s = [G : B] and ∆ = ∆(AB). This will complete
the proofs of Theorem B and Theorem C.

Of course G = AB is a metacyclic factorization of G and T = TG(A). Since mν = sν , n is multiple of
|∆| and |Resmν (T )| = |Resmν (∆)|, it follows that |Resmν (T )| divides n and s(t − 1). On the other hand
if p | r then t ≡ εp−1 + rp mod mp. Therefore, if εp−1 = 1 then omp(t) =

mp
rp
| n and s(t − 1) ≡ srp ≡ 0

mod mp. Otherwise, i.e. if ε = −1 and p = 2, then 2 | |∆| | n and m2

r2
≤ n2 and m2 | 2s. Thus

om2
(t) = om2

(−1 + r2) = max(2, m2

r2
) ≤ n2 and m2 | t(s − 1). This shows that m divides both tn − 1 and

s(t− 1), i.e. T ⊆ Un,sm . Then |A| = m and [G : A] = n, and hence [G : B] = s. From condition (2b) we have
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that ∆ = Resm′(TG(A)) = ∆(AB) and from conditions (2d) and (2c) it follows that T is (n, s)-canonical.
Then the metacyclic factorization G = AB is minimal by Proposition 3.4. �

Having in mind that a metacyclic group is nilpotent if and only if oG = 1 one can easily obtain from
Theorem B a description of the finite nilpotent metacyclic groups or equivalently the values of the lists of
metacyclic invariants of the finite nilpotent metacyclic groups. Observe that (1) corresponds to cyclic groups,
(2) to 2-generated abelian groups, (3) to non-abelian nilpotent metacyclic groups G with εG = 1 and (4) to
metacyclic nilpotent groups with εG = −1.

Corollary 4.1. Let m,n, s ∈ N and t ∈ N ∪ {0}. Then (m,n, s, t) is the list of metacyclic invariants of a
finite metacyclic nilpotent group if and only if s | m, t < m and one of the following conditions hold:

(1) m = 1.
(2) t = 1 and s = m ≤ n.

(3) π(t− 1) = π(m), lcm
(
t− 1, m

t−1

)
| s | n and if 4 | m then 4 | t− 1.

(4) There is a divisor r of s2′m2 such that π(r) = π(m), 4 | r, t ≡ 1 + r2′ mod m2′ , t ≡ −1 + r2

mod m2, m2′
r2′
| s2′ | n2′ , max

(
2, m2

r2

)
≤ n2, m2 ≤ 2s2 and s2 6= n2r2. If moreover 4 | n and 8 | m

then r2 ≤ s2.

In that case Gm,n,s,t is nilpotent with metacyclic invariants (m,n, s, t).

5. A GAP implementation

In this section we show how we can use the result in previous sections to construct some GAP functions
for calculations with finite metacyclic groups. The code of these function is available in
https://www.um.es/adelrio/MetaCyc.php

We start with two auxiliar functions. We call metacyclic parameters to any list (m,n, s, t) with m,n, s ∈ N
and [t]m ∈ Un,sm , i.e. s(t − 1) ≡ tn − 1 mod m. In that case MetacyclicGroupPC([m,n,s,t]) outputs the
group Gm,n,s,t with a power-conjugation presentation. The boolean function IsMetacyclic returns true if
the input is a finite metacyclic and false otherwise.

gap> G:=MetacyclicGroupPC([10,20,5,3]);

<pc group of size 200 with 5 generators>

gap> IsMetacyclic(G);

true

gap> Filtered([1..16],x->IsMetacyclic(SmallGroup(100,x)));

[ 1, 2, 3, 4, 5, 6, 8, 9, 14, 16 ]

To introduce the next function we start presenting an algorithm that uses Algorithm 1 to compute
MCINV(G) for a given metacyclic group G. Observe that in Algorithm 1 the values of m = |a|, n = [G : 〈a〉],
s = [G : 〈a〉] and (r, ε, o) = [TG(〈a〉)] are updated along the calculations. We use this in step (2) of the
following algorithm.

Algorithm 2. Input: A finite metacyclic group G.
Output: MCINV(G).

(1) Compute a metacyclic factorization G = AB of G.
(2) Perform Algorithm 1 with input (A,B) saving not only the output (〈a〉 , 〈b〉) but also m,n, s, r, ε and

o computed along.
(3) Compute m′ using (1.1) and t ∈ N such that ab = at.
(4) Return (m,n, s,Resm′(〈t〉m)).

A slight modification of Algorithm 2 allows the computation of the list of metacyclic invariants of a finite
metacyclic group:

Algorithm 3. Input: A finite metacyclic group G.
Output: The list of metacyclic invariants of G.

(1) Compute a metacyclic factorization G = AB of G.
(2) Perform Algorithm 1 with input (A,B) saving not only the output (〈a〉 , 〈b〉) but also m,n, s, r and ε

computed along.
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(3) Compute m′ using (1.1) and t ∈ N such that ab = at and set ∆ := Resm′(〈t〉m).
(4) Use the Chinese Remainder Theorem to compute the unique 1 ≤ t ≤ mπ(r) such that t ≡ εp−1 + rp

mod mp for every p ∈ π(r).
(5) While gcd(t,m′) 6= 1 or 〈t〉m′ 6= ∆, t := t+mπ(r).
(6) Return (m,n, s, t).

Observe that G = 〈a〉 〈b〉 is a minimal metacyclic factorization at step (2) of Algorithm 3, and m = mG,
n = nG and s = sG. At step (3), we have TG(〈a〉) = 〈t〉m and henceG ∼= Gm,n,s,t and ∆ = ∆G = Resm′(〈t〉m).
However, this t is not tG yet. The t at step Item 4 is the smallest one with t ≡ εp−1 + rp mod mp for every
p ∈ π(r) and the next steps search for the first integer t satisfying this condition as well as representing an
element of Um with Resm′(〈t〉m) = ∆.

The GAP function MetacyclicInvariants implements Algorithm 3. For example in the following calcu-
lations one computes the metacyclic invariants of all the metacyclic groups of order 200.

gap> mc200:=Filtered([1..52],i->IsMetacyclic(SmallGroup(200,i)));;

gap> List(mc200,i->MetacyclicInvariants(SmallGroup(200,i)));

[[25,8,25,24],[1,200,1,0],[25,8,25,7],[100,2,50,99],[100,2,50,49],[100,2,100,99],

[50,4,50,49],[2,100,2,1],[4,50,4,3],[4,50,2,3],[50,4,50,7],[5,40,5,4],[5,40,5,1],

[5,40,5,2],[20,10,10,19],[20,10,10,9],[20,10,20,19],[10,20,10,9],[10,20,10,1],

[20,10,20,11],[20,10,10,11],[10,20,10,3]]

The GAP functions MCINV and MCINVData implement Algorithm 2 representing MCINV(G) in two different
ways. While MCINV(G) outputs MCINV(G) if G is a metacyclic group, MCINVData(G) ouputs a 5-tuple
[m,n,s,m’,t] such that MCINV(G) = (m,n, s, 〈t〉m′). The input data G can be replaced by metacyclic
parameters [m,n, s, t] representing the group Gm,n,s,t:
gap> G:=SmallGroup(384,533);

<pc group of size 384 with 8 generators>

gap> MetacyclicInvariants(G);

[ 8, 48, 4, 5 ]

gap> x:=MCINV(G);

[ 8, 48, 4, <group of size 1 with 1 generator> ]

gap> y:=MCINVData(G);

[ 8, 48, 4, 4, 1 ]

gap> x[4]=Group(ZmodnZObj(y[5],y[4]));

true

gap> H:=MetacyclicGroupPC([8,48,4,5]);

<pc group of size 384 with 8 generators>

gap> IdSmallGroup(H);

[ 384, 533 ]

gap> MetacyclicInvariants([20,4,8,11]);

[ 4, 20, 4, 3 ]

gap> MCINVData([20,4,8,11]);

[ 4, 20, 4, 4, 3 ]

Observe that two finite metacyclic groups G and H are isomorphic if and only if MCINV(G) = MCINV(G)
if and only if they have the same metacyclic invariants. The function AreIsomorphicMetacyclicGroups uses
this to decide if two metacyclic groups G and H are isomorphic. It outputs true if G and H are isomorphic
finite metacyclic groups and false if they are finite metacyclic groups but they are not isomorphic. In case
one of the inputs is not a finite metacyclic group then it fails. The input data G and H can be replaced by
metacyclic parameters of them.

gap> H:=MetacyclicGroupPC([100,30,10,31]);

<pc group of size 3000 with 7 generators>

gap> K:=MetacyclicGroupPC([300,30,10,181]);

<pc group of size 9000 with 8 generators>

gap> AreIsomorphicMetacyclicGroups(H,K);

false

gap> AreIsomorphicMetacyclicGroups([300,10,10,31],K);
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false

gap> G:=MetacyclicGroupPC([300,10,10,31]);

<pc group of size 3000 with 7 generators>

gap> MetacyclicInvariants(G);

[ 100, 30, 10, 31 ]

gap> MetacyclicInvariants(H);

[ 100, 30, 10, 31 ]

gap> MetacyclicInvariants(K);

[ 50, 180, 10, 31 ]

We now explain a method to compute all the metacyclic group of a given order N . We start producing all
the tuples (m,n, s, r, ε, o) such that MCINV(G) = (m,n, s,∆) and [∆] = (r, ε, o) for some finite metacyclic
group G and some cyclic subgroup ∆ of Um′ with m′ as in (1.1). For such group G we denote IN(G) =
(m,n, s, r, ε, o). The following lemma characterizes when a given tuple (m,n, r, s, r, ε, o) equals IN(G) for
some finite metacyclic group:

Lemma 5.1. Let m,n, s, r, o ∈ N and ε ∈ {1,−1} and let π′ = π(m) \ π(r) and π = π(mn) \ π′. Then
IN(G) = (m,n, s, r, ε, o) for some finite metacyclic group G if and only if the following conditions hold:

(A) s | m, r | m, o | nπ, mπ | rn, mπ | rs, sπ′ = mπ′ and if 4 | m then 4 | r.
(B) If p ∈ π(r) and εp−1 = 1 then sp | n and either rp | s or spop - n.
(C) If ε = −1 then 2 | n, 4 | m, m2 | 2s, s2 6= n2r2. If moreover 4 | n, 8 | m and o2 < n2 then r2 | s.
(D) o | lcm{q− 1 : q ∈ π′} and for every q ∈ π′ with gcd(o, q− 1) = 1 there is p ∈ π′ ∩π(n) with p | q− 1.

Proof. Suppose first that (m,n, s, r, ε, o) = IN(G) for some finite metacyclic group G. Then MCINV(G) =
(m,n, s,∆) for some cyclic subgroup ∆ of Um′ with [∆] = (r, ε, o). Then the conditions in statement
(2) of Theorem B hold and this implies that conditions (A)–(C) hold. To prove (D) we fix a metacyclic
factorization G = AB and observe that o = oG(A) = |Resmπ′ (TG(A))π| and Resmπ′ (TG(A))π is a cyclic
subgroup of (Umπ′ )π. Then o divides the exponent of (Umπ′ )π which is lcm{(q−1)π : q ∈ π′}. This proves the
first part of (D). To prove the second one we take q ∈ π′ such that gcd(o, q − 1) = 1. By Lemma 3.1.(4), we
have Resq(TG(A)) 6= 1. However Resq(TG(A))π | gcd(o, q−1) = 1 and hence, if p is a divisor of Resq(TG(A))
then p | |Uq| = q − 1, p | [G : A] = n and p 6∈ π, so that p ∈ π′. This finishes the proof of (D).

Conversely, suppose that conditions (A)-(D) hold. By condition (D), 2 6∈ π′ and hence if q ∈ π′ then
Umq is cyclic of order ϕ(mq). Therefore for every q ∈ π′, the group Uq contains a cyclic subgroup of
order q − 1. Therefore Um contains a cyclic subgroup of order k = lcm{q − 1 : q ∈ π′}. Furthermore, by
(D), for every p ∈ π we have that op | k and hence op | q − 1 for some q ∈ π′. Then Umq contains an
element of order op and, as Umπ′

∼=
∏
q∈π′ Umq , it follows that Umπ′ contains an element of order o. Let

τ = {q ∈ π′ : gcd(o, q − 1) = 1}. By (D), for every q ∈ τ there is pq ∈ π′ ∩ π(n) such that pq | q − 1. Let
h =

∏
q∈τ pq. For every q ∈ τ , there is an element in Umq of order pq. Then Umτ has an element of order

h. As o | nπ and h | nπ′ , Umπ′ has a cyclic subgroup S of order oh. Then Aut(Cm) has a cyclic subgroup T

such that Resmπ′ (T ) = S and Resmp(T ) = Resmp(T ) =
〈
εp−1 + rp

〉
mp

for every p ∈ π. By condition (B), if

p ∈ π(r) and εp−1 = 1 then |Resmp(T )| = mp
rp
| np. By condition (C), if ε = −1 then 2 ∈ π, 2 | n and m2

r2
| n

by (A). Thus |Resmp(T )| = max(2, m2

r2
) | n. Then |Resmp(T )| divides n for every p ∈ π. This implies that

|T | = lcm(|S|, |Resmp(T )|, p ∈ π) and this number divides n. On the one hand we have sp′ = mπ′ and if
p ∈ π then either mp | rs or p = 2, ε = −1 and 2m2 | s. Using this it is easy to see that Resm

s
(T ) = 1. This

proves that T ⊆ Un,sm and by the election of T it follows that [T ] = (r, ε, o). Moreover, from conditions (B)
and (C), it follows that T is (n, s)-canonical and hence Gm,n,s,T = 〈a〉 〈b〉 is a minimal factorization. Thus
IN(Gm,n,s,T ) = (m,n, s, r, ε, o), as desired. �

Our last algorithm is based in Lemma 5.1 and compute a list containing exactly one representative of
each isomorphism class of the metacyclic groups of a given order.

Algorithm 4. Input: A positive integer N .
Output: A list containing exactly one representative of each isomorphism class of the metacyclic groups

of order N .

(1) M := [ ], an empty list, π′ := π(m) \ π(r), π′ := π(N) \ π′.
(2) P := {(m,n, s, r, ε, o) : n,m, s, r, o ∈ N, ε ∈ {1,−1}, N = mn and conditions (A)-(D) hold}.
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(3) For each (m,n, s, r, ε, o) ∈ P :

(a) m′ := mπ′
∏
p∈π(r)m

′
p with m′p as in (1.1) and s′ := sm′

m .

(b) For every cyclic subgroup ∆ of Un,s
′

m′ with [∆] = (r, ε, o):
• Select a cyclic subgroup T of Um such that Resm′(T ) = ∆.
• Add Gm,n,s,T to the list M .

(4) Return the list M .

Observe that if (m,n, s, r, ε, o) satisfy conditions (A)-(D) then m divides sm′. Indeed, if p - r then
mp = m′p. If ε = −1 then m2

2 divides s and 2 | m′, hence in this case m2

s2
| m′. Finally, if p ∈ π(r) and

εp−1 = 1. Then p ∈ π and hence mp ≤ rpsp by condition (A). Therefore
mp
sp
≤ min(mp, rpop). If rp | sp then

also
mp
sp
≤ sp. Otherwise spop - n and hence rp

spop
np

> rp ≥ mp
sp

. This proves that
mp
sp
| m′ for every prime p,

so that m | sm′, as desired. This justify that s′ ∈ N is step (3a).

On the other hand if T is as in (3b) then T ⊆ Un,sm . Indeed, ms = m′

s′ and hence Resm
s

(T ) = Resm′
s′

(∆) = 1.

Moreover Resmπ′ (T ) = Resm′
π′

(∆) and hence |Resmπ′ (T )| divides n. On the other hand [T ] = (r, ε, o) = [T ]

and hence if εp−1 = 1 then |Resmp(T )| = mp
rp
| n, by (A). Otherwise |Resm2

T2| = max(2, m2

r2
) which divides

n by (A) and (C).
The function MetacyclicGroupsByOrder(N) implements a combination of Algorithm 3 and Algorithm 4

and returns the complete list of metacyclic invariants of metacyclic groups of order N .

gap> MetacyclicGroupsByOrder(200);

[[1,200,1,0],[2,100,2,1],[4,50,2,3],[4,50,4,3],[5,40,5,1],[5,40,5,2],[5,40,5,4],

[10,20,10,1],[10,20,10,3],[10,20,10,9],[20,10,10,9],[20,10,10,11],[20,10,10,19],

[20,10,20,11],[20,10,20,19],[25,8,25,7],[25,8,25,24],[50,4,50,7],[50,4,50,49],

[100,2,50,49],[100,2,50,99],[100,2,100,99]]

gap> MetacyclicGroupsByOrder(8*3*5*7);

[[1,840,1,0],[2,420,2,1],[3,280,3,2],[4,210,2,3],[4,210,4,3],[5,168,5,2],[5,168,5,4],

[6,140,6,5],[7,120,7,2],[7,120,7,6],[7,120,7,3],[10,84,10,3],[10,84,10,9],[12,70,6,5],

[12,70,6,11],[12,70,12,11],[14,60,14,3],[14,60,14,9],[14,60,14,13],[15,56,15,2],

[15,56,15,14],[20,42,10,9],[20,42,10,19],[20,42,20,19],[21,40,21,20],[28,30,14,3],

[28,30,14,5],[28,30,14,11],[28,30,14,13],[28,30,14,27],[28,30,28,3],[28,30,28,11],

[28,30,28,27],[30,28,30,17],[30,28,30,29],[35,24,35,2],[35,24,35,3],[35,24,35,4],

[35,24,35,13],[35,24,35,19],[35,24,35,34],[42,20,42,41],[60,14,30,29],[60,14,30,59],

[60,14,60,59],[70,12,70,3],[70,12,70,9],[70,12,70,13],[70,12,70,19],[70,12,70,23],

[70,12,70,69],[84,10,42,41],[84,10,42,83],[84,10,84,83],[105,8,105,62],[105,8,105,104],

[140,6,70,9],[140,6,70,19],[140,6,70,39],[140,6,70,69],[140,6,70,89],[140,6,70,139],

[140,6,140,19],[140,6,140,39],[140,6,140,139],[210,4,210,83],[210,4,210,209],

[420,2,210,209],[420,2,210,419],[420,2,420,419]]
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