A CLASSIFICATION OF THE FINITE 2-GENERATOR CYCLIC-BY-ABELIAN GROUPS OF PRIME-POWER ORDER

OSNEL BROCHE, DIEGO GARCÍA-LUCAS AND ÁNGEL DEL RÍO

Abstract

We classify the finite 2-generator cyclic-by-abelian groups of prime-power order. We associate to each such group G a list $\operatorname{inv}(G)$ of numerical group invariants which determines the isomorphism type of G. Then we describe the set formed by all the possible values of $\operatorname{inv}(G)$. This allows us to develop practical algorithms to construct all finite non-abelian 2-generator cyclic-by-abelian groups of a given prime-power order, to compute the invariants of such a group, and to decide whether two such groups are isomorphic.

1. Introduction

Classifying groups up to isomorphism is a fundamental problem in Group Theory, already identified in the seminal work of Cayley on finite groups [Cay78] where he wrote: "The general problem is to find all the groups of a given order". Unfortunately, an answer to this question is far from attainable unless one restricts to particularly well behaved groups such as, for example, abelian finitely generated groups, or finite metacyclic groups (see e.g. [Hem00, GBR] for the latter case). The special case of groups of prime-power order is particularly difficult as was observed by P. Hall in [Hal40, page 131]: "To put it crudely, there is no apparent limit to the complication of a prime-power group. [...] And it seems unlikely that it will be possible to compass the overwhelming variety of prime-power groups within the bounds of a single finite system of formulae". This is illustrated, for example, by the 33 pages that Blackburn required to classify the finite p-groups with derived subgroup of order p [Bla99]. A different approach aims at a classification of the p-groups of a given order. This is completed up to p^{7}, for p odd, and up to order 2^{9} [OVL05, EO99].

Besides the basic interest in classifying, up to isomorphism, the groups of a particular type, such classifications are often vital in addressing other questions. Our initial motivation was trying to solve the Modular Isomorphism Problem for finite 2-generator cyclic-by-abelian p-groups: this paper paved the way to find a negative solution for this problem [GLMR22] for $p=2$ and has been essential in obtaining some positive results for $p>2$ [GLdRS22].

A classification of the finite 2-generator cyclic-by-abelian p-groups is available in the literature if p is odd [Mie75, Son13] or if the groups are assumed to be of class 2 [AMM12]. The aim of this paper is to fill this gap. More precisely we give a complete classification of such groups up to isomorphism, by associating to such a group G a tuple of integers

$$
\operatorname{inv}(G)=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)
$$

such that if H is another such group then $G \cong H$ if and only if $\operatorname{inv}(G)=\operatorname{inv}(H)$, and describe the possible values of $\operatorname{inv}(G)$. As the classification is known for p odd, the reader may wonder why we do not restrict our treatment to the case $p=2$. There is no reduction of complexity by considering only the case $p=2$, and hence for completeness we prefer to present the results in the general case. We followed the approach of Miech because it adapts better to the application we had in mind, namely the Modular Isomorphism Problem. Along the way we fix mistakes in Miech's classification (see Remark 3.3). While the Miech and Song classifications split into various families depending on parameters with no obvious group theoretical interpretation, we present a unified presentation for the group G in terms of the entries of $\operatorname{inv}(G)$ (see (1.4), (1.1) and (1.3)) and the group theoretical role of each entry of $\operatorname{inv}(G)$ is clear from the definition. This provides a practical algorithm to compute all the groups under consideration and to implement their

[^0]construction in GAP [GAP22]. It also allows us to compute the invariants associated to a given group and hence to decide if two such groups are isomorphic. We have implemented this and, with the help of the GAP package ANUPQ [GNOH22], we have verified that our results agree with the output of the p-group generation algorithm [O'B90] up to orders $2^{12}, 3^{11}, 5^{10}, 7^{9}, 11^{8}, 13^{7}$ and 23^{8}.

To present our main result we fix some notation, and at the same time we outline our strategy. Let G be a finite non-abelian 2-generator cyclic-by-abelian group of prime-power order. By the Burnside Basis Theorem [Rob82, 5.3.2], G / G^{\prime} is 2-generator and non-cyclic, and the first four invariants p, m, n_{1} and n_{2} of G are given by

$$
\left|G^{\prime}\right|=p^{m} \quad \text { and } \quad G / G^{\prime} \cong C_{p^{n_{1}}} \times C_{p^{n_{2}}}, \quad \text { with } n_{1} \geq n_{2}
$$

A basis of G is an ordered pair $b=\left(b_{1}, b_{2}\right)$ of elements of G satisfying

$$
G / G^{\prime}=\left\langle b_{1} G^{\prime}\right\rangle \times\left\langle b_{2} G^{\prime}\right\rangle \quad \text { and } \quad\left|b_{i} G^{\prime}\right|=p^{n_{i}}(i=1,2)
$$

Let \mathcal{B} denote the set of bases of G. Each basis determines a list of eight integers, and our strategy selects bases so that the associated lists satisfy an extreme condition with respect to a well order. This provides the remaining eight entries of $\operatorname{inv}(G)$. To define the integers associated to a basis, we first define two maps $\sigma: G \rightarrow\{1,-1\}$ and $o: G \rightarrow\{0,1, \ldots, m-1\}$ as follows:

$$
\begin{aligned}
\sigma(g) & = \begin{cases}-1, & \text { if } a^{g}=a^{-1} \neq a \text { for some } a \in G^{\prime} \\
1, & \text { otherwise. }\end{cases} \\
o(g) & = \begin{cases}0, & \text { if } a^{g}=a^{-1} \\
\log _{p}\left|g C_{G}\left(G^{\prime}\right)\right|, & \text { otherwise every } a \in G^{\prime}\end{cases}
\end{aligned}
$$

So each basis $\left(b_{1}, b_{2}\right)$ of G yields four integers $\sigma\left(b_{i}\right)$ and $o\left(b_{i}\right), i=1,2$ and we use this to define the next four entries of $\operatorname{inv}(G)$ by setting

$$
\sigma o=\left(\sigma_{1}, \sigma_{2}, o_{1}, o_{2}\right)=\min _{\text {lex }}\left\{\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right):\left(b_{1}, b_{2}\right) \in \mathcal{B}\right\}
$$

where $\min _{\text {lex }}$ denotes the minimum with respect to the lexicographical order. Let r_{1} and r_{2} be the unique integers $1<r_{i} \leq 1+p^{m}$ satisfying

$$
r_{1} \equiv \sigma_{1}\left(1+p^{m-o_{1}}\right) \bmod p^{m} \quad \text { and } \quad \begin{cases}r_{2} \equiv \sigma_{2}\left(1+p^{m-o_{2}}\right) \bmod p^{m}, & \text { if } o_{1} o_{2}=0 \tag{1.1}\\ r_{2} \equiv \sigma_{2}\left(1+p^{m-o_{1}}\right)^{p_{1}-o_{2}} \bmod p^{m}, & \text { otherwise }\end{cases}
$$

Observe that the classes modulo p^{m} represented by r_{i} and $\sigma_{i}+p^{m-o_{i}}$ generate the same subgroup in the group of units of $\mathbb{Z} / p^{m} \mathbb{Z}$.

Let

$$
\mathcal{B}_{r}=\left\{\left(b_{1}, b_{2}\right) \in \mathcal{B}: a^{b_{i}}=a^{r_{i}} \text { for every } i=1,2 \text { and } a \in G^{\prime}\right\}
$$

In Proposition 2.3, we prove that \mathcal{B}_{r} is not empty. From now on, we only use bases in \mathcal{B}_{r} and for each $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}_{r}$ we denote by $t_{1}(b)$ and $t_{2}(b)$ the unique integers satisfying

$$
\begin{equation*}
1 \leq t_{i}(b) \leq p^{m} \quad \text { and } \quad b_{i}^{p^{n_{i}}}=\left[b_{2}, b_{1}\right]^{t_{i}(b)} \quad(i=1,2) \tag{1.2}
\end{equation*}
$$

Define $o^{\prime}(b)=\left(o_{1}^{\prime}(b), o_{2}^{\prime}(b)\right)$ and $u(b)=\left(u_{2}(b), u_{1}(b)\right)$ by setting

$$
o_{i}^{\prime}(b)=\log _{p}\left(\left|b_{i}\right|\right)-n_{i} \quad \text { and } \quad t_{i}(b)=u_{i}(b) p^{m-o_{i}^{\prime}(b)}
$$

Observe that $\left|b_{i}\right|=p^{n_{i}+o_{i}^{\prime}(b)}$ and hence $0 \leq o_{i}^{\prime}(b) \leq m$ and $p \nmid u_{i}(b)$. We use this to define the next two entries of $\operatorname{inv}(G)$ by setting

$$
\left(o_{1}^{\prime}, o_{2}^{\prime}\right)=\max _{\operatorname{lex}}\left\{o^{\prime}(b): b \in \mathcal{B}_{r}\right\}
$$

Then we define

$$
\mathcal{B}_{r}^{\prime}=\left\{b \in \mathcal{B}_{r}: o^{\prime}(b)=\left(o_{1}^{\prime}, o_{2}^{\prime}\right)\right\} .
$$

The two remaining entries of $\operatorname{inv}(G)$ are given by

$$
\left(u_{2}, u_{1}\right)=\min _{\text {lex }}\left\{u(b): b \in \mathcal{B}_{r}^{\prime}\right\}
$$

The "unnatural" order on the u 's is not a typo but a convenient technicality. Observe that we abuse notation since o_{i}^{\prime}, u_{i} and t_{i} sometimes denote functions and sometimes integers related to those functions. This does not cause confusion because in the former case the functions always appear with arguments.

Set

$$
\begin{equation*}
t_{i}=u_{i} p^{m-o_{i}^{\prime}} \quad(i=1,2) \tag{1.3}
\end{equation*}
$$

Now G is isomorphic to \mathcal{G}_{I}, where I is an abbreviation for ($p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}$) and

$$
\begin{equation*}
\mathcal{G}_{I}=\left\langle b_{1}, b_{2} \mid\left[b_{2}, b_{1}\right]^{p^{m}}=1, \quad\left[b_{2}, b_{1}\right]^{b_{i}}=\left[b_{2}, b_{1}\right]^{r_{i}}, \quad b_{i}^{p^{n_{i}}}=\left[b_{2}, b_{1}\right]^{t_{i}}, \quad(i=1,2)\right\rangle \tag{1.4}
\end{equation*}
$$

where r_{i} and t_{i} are as defined in (1.1) and (1.3).
Hence, G is completely determined up to isomorphism by $\operatorname{inv}(G)$. Therefore, to obtain our classification it only remains to give the list of tuples occurring as $\operatorname{inv}(G)$.
Main Theorem. The maps $[G] \mapsto \operatorname{inv}(G)$ and $I \mapsto\left[\mathcal{G}_{I}\right]$ define mutually inverse bijections between the set of isomorphism classes of finite non-abelian 2-generator cyclic-by-abelian groups of prime-power order and the set of lists of integers $\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)$ satisfying the following conditions.
(1) p is prime and $n_{1} \geq n_{2} \geq 1$.
(2) $\sigma_{i}= \pm 1,0 \leq o_{i}<\min \left(m, n_{i}\right)$ and $p \nmid u_{i}$ for $i=1,2$.
(3) If $p=2$ and $m \geq 2$ then $o_{i}<m-1$ for $i=1,2$.
(4) $0 \leq o_{i}^{\prime} \leq m-o_{i}$ for $i=1,2$ and $o_{1}^{\prime} \leq m-o_{2}$.
(5) One of the following conditions holds:
(a) $o_{1}=0$.
(b) $0<o_{1}=o_{2}$ and $\sigma_{2}=-1$.
(c) $o_{2}=0<o_{1}$ and $n_{2}<n_{1}$.
(d) $0<o_{2}<o_{1}<o_{2}+n_{1}-n_{2}$.
(6) Suppose that $\sigma_{1}=1$. Then the following conditions hold:
(a) $\sigma_{2}=1$ and $o_{2}+o_{1}^{\prime} \leq m \leq n_{1}$.
(b) Either $o_{1}+o_{2}^{\prime} \leq m \leq n_{2}$ or $2 m-o_{1}-o_{2}^{\prime}=n_{2}<m$ and $u_{2} \equiv 1 \bmod p^{m-n_{2}}$.
(c) If $o_{1}=0$ then either
(i) $o_{1}^{\prime} \leq o_{2}^{\prime} \leq o_{1}^{\prime}+o_{2}+n_{1}-n_{2}$ and $\max \left(p-2, o_{2}^{\prime}, n_{1}-m\right)>0$, or
(ii) $p=2, m=n_{1}, o_{2}^{\prime}=0$ and $o_{1}^{\prime}=1$.
(d) If $o_{2}=0<o_{1}$ then $o_{1}^{\prime}+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime} \leq o_{1}^{\prime}+n_{1}-n_{2}$ and $\max \left(p-2, o_{1}^{\prime}, n_{1}-m\right)>0$.
(e) If $0<o_{2}<o_{1}$ then $o_{1}^{\prime} \leq o_{2}^{\prime} \leq o_{1}^{\prime}+n_{1}-n_{2}$.
(f) $1 \leq u_{1} \leq p^{a_{1}}$, where

$$
a_{1}=\min \left(o_{1}^{\prime}, o_{2}, o_{2}+n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}\right)
$$

(g) One of the following conditions holds:
(i) $1 \leq u_{2} \leq p^{a_{2}}$.
(ii) $o_{1} o_{2} \neq 0, n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}=0<a_{1}, 1+p^{a_{2}} \leq u_{2} \leq 2 p^{a_{2}}$, and $u_{1} \equiv 1 \bmod p$, where

$$
a_{2}= \begin{cases}0, & \text { if } o_{1}=0 \\ \min \left(o_{1}, o_{2}^{\prime}, o_{2}^{\prime}-o_{1}^{\prime}+\max \left(0, o_{1}+n_{2}-n_{1}\right)\right), & \text { if } o_{2}=0<o_{1} \\ \min \left(o_{1}-o_{2}, o_{2}^{\prime}-o_{1}^{\prime}\right), & \text { otherwise }\end{cases}
$$

(7) Suppose that $\sigma_{1}=-1$. Then the following conditions hold:
(a) $p=2, m \geq 2, o_{1}^{\prime} \leq 1$ and $u_{1}=1$.
(b) If $\sigma_{2}=1$ then $n_{2}<n_{1}$ and the following conditions hold:
(i) If $m \leq n_{2}$ then $o_{2}^{\prime} \leq 1, u_{2}=1$ and either $o_{1}^{\prime} \leq o_{2}^{\prime}$ or $o_{2}=0<n_{1}-n_{2}<o_{1}$
(ii) If $m>n_{2}$ then $m+1=n_{2}+o_{2}^{\prime}, u_{2}\left(1+2^{m-o_{1}-1}\right) \equiv-1 \bmod 2^{m-n_{2}}, 1 \leq u_{2} \leq 2^{m-n_{2}+1}$, either $o_{1}^{\prime}=1$ or $o_{1}+1 \neq n_{1}$, and at least one of the following conditions holds:

- $o_{1}^{\prime}=0$ and either $o_{1}=0$ or $o_{2}+1 \neq n_{2}$.
- $o_{1}^{\prime}=1, o_{2}=0$ and $n_{1}-n_{2}<o_{1}$.
- $u_{2} \leq 2^{m-n_{2}}$.
(c) If $\sigma_{2}=-1$ then $o_{2}^{\prime} \leq 1, u_{2}=1$ and the following conditions hold:
(i) If $o_{1} \leq o_{2}$ and $n_{1}>n_{2}$ then $o_{1}^{\prime} \leq o_{2}^{\prime}$.
(ii) If $o_{1}=o_{2}$ and $n_{1}=n_{2}$ then $o_{1}^{\prime} \geq o_{2}^{\prime}$
(iii) If $o_{2}=0<o_{1}=n_{1}-1$ and $n_{2}=1$ then $o_{1}^{\prime}=1$ or $o_{2}^{\prime}=1$.
(iv) If $o_{2}=0<o_{1}$ and $n_{1} \neq o_{1}+1$ or $n_{2} \neq 1$ then $o_{1}^{\prime}+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime}$.
(v) If $o_{1} o_{2} \neq 0$ and $o_{1} \neq o_{2}$ then $o_{1}^{\prime} \leq o_{2}^{\prime}$.

We now outline the structure of the paper. The goal of Sections 2-5 is to find necessary conditions on a tuple $I=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)$ to be realizable as $\operatorname{inv}(G)$ for some finite non-abelian 2 -generator cyclic-by-abelian group G of prime-power order. The proof of the Main Theorem concludes in Section 6, where it is shown that the set of conditions we obtain - those described in the Main Theorem - suffices for the realizability of I. To find the necessary conditions we fix a finite non-abelian 2-generator cyclic-by-abelian p-group G with $\operatorname{inv}(G)=I$. Suppose that $b \in \mathcal{B}$. In Lemma 2.2 we find a set of conditions in terms of $p, m, n_{1}, n_{2}, \sigma_{1}(b), \sigma_{2}(b), o_{1}(b)$ and $o_{2}(b)$ equivalent to $\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right)=\left(\sigma_{1}, \sigma_{2}, o_{1}, o_{2}\right)$. These conditions, substituting $\sigma_{i}(b)$ and $o_{i}(b)$ by σ_{i} and o_{i}, are added to the set of necessary conditions on I. We close Section 2 with some additional conditions on I. Section 3 is a technical preparation for the next two sections. In Lemmas $4.2,4.3$ and 4.4 we describe, for $b \in \mathcal{B}_{r}$, a set of conditions, in terms only of the first 8 entries of $\operatorname{inv}(G)$ and of $o_{1}^{\prime}(b)$ and $o_{2}^{\prime}(b)$, equivalent to $\left(o_{1}^{\prime}, o_{2}^{\prime}\right)=\left(o_{1}^{\prime}(b), o_{2}^{\prime}(b)\right)$. These conditions, substituting $o_{i}^{\prime}(b)$ by o_{i}^{\prime}, are added to our set of necessary conditions. The same is done for $u_{i}(b)$ and u_{i} in Lemmas 5.1 and 5.2. We emphasize that in these lemmas we prove equivalences, and not mere implications, because it is useful in the subsequent steps. Moreover, their proofs are the base of an algorithm, implemented in [BCGLdR22], to compute $\operatorname{inv}(G)$ in an apparently efficient way. In Section 7 we discuss our implementation in GAP of our classification and report some experiments which support the correctness of the Main Theorem. In Appendix A we collect technical number theoretical results used frequently in the proofs of Sections 2 and 3.

2. Fixing the r_{i} 's and constraints on the invariants

In this section we obtain some restrictions on the invariants of our target groups and we prove the existence of a basis $\left(b_{1}, b_{2}\right)$ such that $\left[b_{2}, b_{1}\right]^{b_{i}}=\left[b_{2}, b_{1}\right]^{r_{i}}$, where r_{i} is defined by (1.1).

We start with some notation. If p is a prime integer and n is a non-zero integer then $v_{p}(n)$ denotes the largest integer m with $p^{m} \mid n$. We set $v_{p}(0)=\infty$. If m is an integer coprime to n then $\mathrm{o}_{m}(n)$ denotes the multiplicative order of n modulo m, i.e. the minimum positive integer k such that $n^{k} \equiv 1 \bmod m$. We use $\leq_{\text {lex }}$ to denote the lexicographic order on lists of integers of the same length and min lex and max mex $_{\text {lex }}$ denote the minimum and maximum with respect to $\leq_{\text {lex }}$, respectively.

We use standard group theoretical notation. For example, the cyclic group of order n is denoted C_{n} and if G is a group then G^{\prime} denotes its derived subgroup. For $g, h \in G$

$$
g^{h}=h^{-1} g h, \quad[g, h]=g^{-1} h^{-1} g h, \quad|g|=\text { order of } g .
$$

If G^{\prime} is cyclic and $g \in G$ then $r(g)$ denotes an integer, unique modulo $\left|G^{\prime}\right|$, such that $a^{g}=a^{r(g)}$ for every $a \in G^{\prime}$.

Given integers s, t and n with $n \geq 0$ we set

$$
\mathcal{S}(s \mid n)=\sum_{i=0}^{n-1} s^{i} \quad \text { and } \quad \mathcal{T}(s, t \mid n)=\sum_{0 \leq i<j<n} s^{i} t^{j}
$$

This notation is motivated by the following lemma whose proof is straightforward. More properties of these operators are included in Appendix A.

Lemma 2.1. If G is a cyclic-by-abelian group then the following equalities hold:

$$
\begin{array}{rlr}
{\left[x_{1} \cdots x_{n}, y_{1} \cdots y_{m}\right]} & =\prod_{i=1}^{n} \prod_{j=1}^{m}\left[x_{i}, y_{j}\right]^{x_{i+1} \cdots x_{n} y_{j+1} \cdots y_{m}} & \left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m} \in G\right), \\
(g a)^{n} & =g^{n} a^{\mathcal{S}(r(g) \mid n)} & \left(g \in G, a \in G^{\prime}\right), \\
(g h)^{n} & =g^{n} h^{n}[h, g]^{\mathcal{T}(r(g), r(h) \mid n)} & (g, h \in G) . \tag{2.3}
\end{array}
$$

In the remainder of the paper G is a finite non-abelian 2-generator cyclic-by-abelian group of prime-power order and

$$
\operatorname{inv}(G)=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)
$$

Observe that

$$
\begin{equation*}
\sigma(g)=-1 \quad \text { if and only if } \quad p=2, m \geq 2 \text { and } r(g) \equiv-1 \bmod 4 \tag{2.4}
\end{equation*}
$$

As $r(g)$ is coprime to p and uniquely determined modulo p^{m}, we abuse notation by identifying $r(g)$ with an element of $\mathcal{U}_{p^{m}}$, the group of units of $\mathbb{Z} / p^{m} \mathbb{Z}$, and use standard group theoretical notation for the $r(g)$'s. For example, $|r(g)|=\mathrm{o}_{p^{m}}(r(g))$ and $\left\langle r\left(g_{1}\right), r\left(g_{2}\right), \ldots, r\left(g_{k}\right)\right\rangle$ denotes the group generated by the $r\left(g_{i}\right)$'s in $\mathcal{U}_{p^{m}}$, for $g_{1}, \ldots, g_{k} \in G$. Then $g \mapsto r(g)$ defines a group homomorphism $G \rightarrow \mathcal{U}_{p^{m}}$ with kernel $C_{G}\left(G^{\prime}\right)$ and image contained in the Sylow p-subgroup of $\mathcal{U}_{p^{m}}$. In particular

$$
\left|g C_{G}\left(G^{\prime}\right)\right|=\mathrm{o}_{p^{m}}(r(g)),
$$

and hence

$$
o(g)= \begin{cases}0, & \text { if } r(g) \equiv-1 \bmod p^{m} \tag{2.5}\\ \log _{p}\left(\mathrm{o}_{p^{m}}(r(g))\right), & \text { otherwise }\end{cases}
$$

Therefore, $\left|g C_{G}\left(G^{\prime}\right)\right|=p^{e}$ with $0 \leq e \leq m-1$ and if $p=2$ and $m \geq 3$ then $e \leq m-2$. Furthermore, if $p=2, m=2$ and $e=1$ then $r(g) \equiv-1 \bmod 4$ and hence $o(g)=0$. This implies that

$$
\begin{equation*}
0 \leq o_{i}<m \quad \text { and } \quad \text { if } p=2 \text { and } m \geq 2 \text { then } o_{i} \leq m-2 \tag{2.6}
\end{equation*}
$$

If p is odd or $m \leq 2$ then $\mathcal{U}_{p^{m}}$ is cyclic and its subgroup of order p^{e} for $e \leq m-1$ is $\left\langle 1+p^{m-e}\right\rangle$. If $m \geq 3$ then $\mathcal{U}_{2^{m}}=\langle 5\rangle \times\langle-1\rangle$ with $\mathrm{o}_{2^{m}}(5)=2^{m-2}$ and $\mathrm{o}_{2^{m}}(-1)=2$. Thus, in this case, $\mathcal{U}_{2^{m}}$ has exactly three subgroups of order 2 , namely $\langle-1\rangle,\left\langle 1+2^{m-1}\right\rangle$ and $\left\langle-1+2^{m-1}\right\rangle$, and exactly two cyclic subgroups of order p^{e} for $e \in\{2, \ldots, m-2\}$, namely $\left\langle 1+2^{m-e}\right\rangle$ and $\left\langle-1+2^{m-e}\right\rangle$. Hence $\langle r(g)\rangle$ is determined by $o(g)$ and $\sigma(g)$; namely,

$$
\begin{equation*}
\langle r(g)\rangle=\left\langle\sigma(g)\left(1+p^{m-o(g)}\right)\right\rangle=\left\langle\sigma(g)+p^{m-o(g)}\right\rangle . \tag{2.7}
\end{equation*}
$$

Moreover, if $g, h \in G$ and $o(g) \leq o(h)$ then there exists an integer x such that $p \nmid x$ and

$$
r\left(g h^{-x p^{o(h)-o(g)}}\right) \equiv \pm 1 \bmod p^{m}
$$

with negative sign occurring exactly when $p=2, m \geq 3$ and either $\sigma(g)=-1$ and $o(h)>o(g)$, or $o(h)=o(g)$ and $\sigma(g) \neq \sigma(h)$. We will use this without specific mention.

Another fact that we will use without specific mention is the following: if $\left(b_{1}, b_{2}\right) \in \mathcal{B}$ then

$$
\mathcal{B}=\left\{\left(b_{1}^{x_{1}} b_{2}^{y_{1}}\left[b_{2}, b_{1}\right]^{z_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\left[b_{2}, b_{1}\right]^{z_{2}}\right): x_{i}, y_{i}, z_{i} \in \mathbb{Z}, \text { and } p^{n_{1}-n_{2}} \mid x_{2}, \text { and } x_{1} y_{2} \not \equiv x_{2} y_{1} \bmod p\right\}
$$

Our first objective is to characterize the elements b of \mathcal{B} for which $\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right)$ achieves the maximum σo, i.e. the elements of the following set:

$$
\mathcal{B}^{\prime}=\left\{b \in \mathcal{B}: \sigma o=\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right)\right\} .
$$

Lemma 2.2. Let $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}$. Then $b \in \mathcal{B}^{\prime}$ if and only if the following conditions hold:
(1) If $\sigma\left(b_{1}\right)=1$ then $\sigma\left(b_{2}\right)=1$.
(2) If $n_{1}=n_{2}$ then $\sigma\left(b_{1}\right)=\sigma\left(b_{2}\right)$.
(3) One of the following conditions holds:
(a) $o\left(b_{1}\right)=0$.
(b) $0<o\left(b_{1}\right)=o\left(b_{2}\right)$ and $\sigma(b)=(-1,-1)$.
(c) $0=o\left(b_{2}\right)<o\left(b_{1}\right)$ and $n_{2}<n_{1}$.
(d) $0<o\left(b_{2}\right)<o\left(b_{1}\right)<o\left(b_{2}\right)+n_{1}-n_{2}$. In particular, $n_{2}<n_{1}$.

Proof. Suppose that $b \in \mathcal{B}^{\prime}$. Our usual approach is the following: if one of the conditions does not hold, then we construct $\left(\bar{b}_{1}, \bar{b}_{2}\right) \in \mathcal{B}$ with $\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right)>_{\text {lex }}\left(\sigma\left(\bar{b}_{1}\right), \sigma\left(\bar{b}_{2}\right), o\left(\bar{b}_{1}\right), o\left(\bar{b}_{2}\right)\right)$.

If $\sigma\left(b_{1}\right)=1$ and $\sigma\left(b_{2}\right)=-1$ then $\bar{b}=\left(b_{1} b_{2}, b_{2}\right) \in \mathcal{B}$ and $-1=\sigma\left(\bar{b}_{1}\right)<\sigma\left(b_{1}\right)$ contradicting the minimality. This proves (1).

If $n_{1}=n_{2}$ and $\sigma\left(b_{1}\right) \neq \sigma\left(b_{2}\right)$ then $\sigma\left(b_{1}\right)=-1$ and $\sigma\left(b_{2}\right)=1$. Then $\bar{b}=\left(b_{1}, b_{1} b_{2}\right) \in \mathcal{B}$ with $\sigma\left(b_{1}\right)=\sigma\left(\bar{b}_{1}\right)$ and $\sigma\left(\bar{b}_{2}\right)=-1<\sigma\left(b_{2}\right)$, contradicting the minimality. This proves (2).
 with negative sign occurring exactly when $p=2, \sigma\left(b_{1}\right)=-1$ and either $\sigma\left(b_{2}\right)=1$ or $o\left(b_{2}\right)>o\left(b_{1}\right)$. Then $\bar{b}=\left(b_{1} b_{2}^{-x p^{o\left(b_{2}\right)-o\left(b_{1}\right)}}, b_{2}\right) \in \mathcal{B}$ and hence $o\left(\bar{b}_{1}\right)=0$. If moreover $\sigma\left(b_{1}\right)=1$ then $\sigma\left(\bar{b}_{1}\right)=\sigma\left(b_{1}\right)$ and hence, since $\sigma\left(b_{2}\right)=\sigma\left(\bar{b}_{2}\right)$, necessarily $o\left(b_{1}\right)=0$. If $\sigma\left(b_{1}\right)=-1$, and either $\sigma\left(b_{2}\right)=1$ or $o\left(b_{2}\right)>o\left(b_{1}\right)$ then also $\sigma\left(\bar{b}_{1}\right)=-1$ so $o\left(b_{1}\right)=0$. Thus in this case either (3a) or (3b) holds.

Now assume that $o\left(b_{1}\right)>o\left(b_{2}\right)$. This implies that $n_{2}<n_{1}$, since otherwise both $\bar{b}=\left(b_{2}, b_{1}\right)$ and $\widehat{b}=\left(b_{1}, b_{1} b_{2}\right)$ belong to \mathcal{B}, and we obtain a contradiction because if $\sigma\left(b_{2}\right)=\sigma\left(b_{1}\right)$ then $\sigma\left(\bar{b}_{1}\right)=\sigma\left(b_{2}\right)=\sigma\left(b_{1}\right)$ and $o\left(\bar{b}_{1}\right)=o\left(b_{2}\right)<o\left(b_{1}\right)$, contradicting the minimality, and if $\sigma\left(b_{1}\right) \neq \sigma\left(b_{2}\right)$ then $\sigma\left(b_{1}\right)=\sigma\left(\widehat{b}_{1}\right)$ and $\sigma_{2}(\widehat{b})=-1<\sigma\left(b_{2}\right)$. Thus, if $o\left(b_{2}\right)=0$ then condition (3c) holds. Assume otherwise, so $o\left(b_{2}\right) \neq 0$ and let x be an integer coprime to p such that $r\left(b_{2} b_{1}^{-x p^{o_{1}-o_{2}}}\right) \equiv \pm 1 \bmod p^{m}$. If $o\left(b_{2}\right)+n_{1}-n_{2} \leq o\left(b_{1}\right)$ then $\bar{b}=\left(b_{1}, b_{1}^{-x p^{o\left(b_{1}\right)-o\left(b_{2}\right)}} b_{2}\right) \in \mathcal{B}, \sigma\left(\bar{b}_{1}\right)=\sigma\left(b_{1}\right), \sigma\left(\bar{b}_{2}\right)=\sigma\left(b_{2}\right), o\left(\bar{b}_{1}\right)=o\left(b_{1}\right)$, and $o\left(\bar{b}_{2}\right)=0<o\left(b_{2}\right)$, a contradiction. Thus $o\left(b_{1}\right)<o\left(b_{2}\right)+n_{1}-n_{2}$ and condition (3d) holds.

Conversely, assume that b satisfies conditions (1)-(3) and let $s_{i}=r\left(b_{i}\right)$ for $i=1,2$. By minimality, $\left(\sigma_{1}, \sigma_{2}, o_{1}, o_{2}\right) \leq_{\operatorname{lex}}\left(\sigma\left(b_{1}\right), \sigma\left(b_{2}\right), o\left(b_{1}\right), o\left(b_{2}\right)\right)$ and we must prove that equality holds. To this end fix $\bar{b} \in \mathcal{B}^{\prime}$, and take integers x_{i} and y_{i} such that $\bar{b}_{i} G^{\prime}=b_{1}^{x_{i}} b_{2}^{y_{i}} G^{\prime}$ for $i=1,2$. Thus $o_{i}=o_{i}(\bar{b}), \sigma_{i}=\sigma_{i}(\bar{b})$ and $r\left(\bar{b}_{i}\right) \equiv s_{1}^{x_{i}} s_{2}^{y_{i}} \bmod p^{m}$.

Of course, if $\sigma\left(b_{1}\right)=-1$ then $\sigma\left(b_{1}\right)=\sigma_{1}$. Otherwise, $\sigma\left(b_{1}\right)=\sigma\left(b_{2}\right)=1$ by condition (1), and hence $\sigma_{i}(\bar{b})=1$ for $i=1,2$. This proves that $\sigma\left(b_{1}\right)=\sigma_{1}$.

If $\sigma\left(b_{2}\right) \neq \sigma_{2}$ then $\sigma\left(b_{1}\right)=-1=\sigma_{1}$ and $\sigma\left(b_{2}\right)=1$. Then $p=2, n_{1} \neq n_{2}$ by (2), and hence x_{2} is even and y_{2} is odd, which implies that $\sigma\left(b_{2}\right)=\sigma_{2}$, a contradiction. Thus $\sigma\left(b_{2}\right)=\sigma_{2}$.

By means of contradiction suppose that $o_{1}<o\left(b_{1}\right)$. In particular $o\left(b_{1}\right) \neq 0$, i.e. b does not satisfy (3a). Suppose that condition (3b) holds. Then $o\left(b_{1}\right)=o\left(b_{2}\right)$ and $\sigma_{1}=\sigma\left(b_{1}\right)=\sigma\left(b_{2}\right)=-1$. Thus $p=2, m \geq 2$ and $\left\langle s_{1}\right\rangle=\left\langle s_{2}\right\rangle$. Therefore $s_{1} \equiv s_{2} \bmod 4$ and hence $s_{1}^{x_{1}+y_{1}} \equiv s_{1}^{x_{1}} s_{2}^{y_{1}} \equiv r\left(\bar{b}_{1}\right) \equiv-1 \bmod 4$. Then $x_{1} \not \equiv y_{1} \bmod 2$ and therefore $\left|\bar{b}_{1} C_{G}\left(G^{\prime}\right)\right|=\left|b_{1} C_{G}\left(G^{\prime}\right)\right|=2^{o\left(b_{1}\right)} \neq 2^{o_{1}}$. Thus, by (2.5), o $o_{1}=0$ and $s_{1}^{x_{1}} s_{2}^{y_{1}} \equiv-1 \bmod 2^{m}$. As $o\left(b_{1}\right)=o\left(b_{2}\right)>o_{1}$ and $x_{1} \not \equiv y_{1} \bmod 2$, it follows that $o\left(b_{1}\right)=o\left(b_{2}\right)=1, m \geq 3$ and either $2 \nmid x_{1}$ and $s_{1} \equiv-1+2^{m-1} \bmod 2^{m}$ or $2 \nmid y_{1}$ and $s_{2} \equiv-1+2^{m-1} \bmod 2^{m}$. In both cases $-1 \equiv-1+2^{m-1} \bmod 2^{m}$, a contradiction. This proves that $o\left(b_{2}\right)<o\left(b_{1}\right)$ and $n_{2}<n_{1}$. Therefore $p \mid x_{2}$, so $p \nmid x_{1} y_{2}$ and $\left|\bar{b}_{1} C_{G}\left(G^{\prime}\right)\right|=\mathrm{o}_{p^{m}}\left(s_{1}^{x_{1}} s_{2}^{y_{1}}\right)=\mathrm{o}_{p^{m}}\left(s_{1}\right)=p^{o\left(b_{1}\right)} \neq p^{o_{1}}$. Again this implies that $o_{1}=0, \sigma_{1}=-1$ and $o\left(b_{1}\right)=1$, so $o\left(b_{2}\right)=0$ and $-1 \equiv s_{1}^{x_{1}} s_{2}^{y_{1}} \equiv \pm s_{1} \bmod 2^{m}$ which is not possible because $s_{1} \notin\langle-1\rangle$, as $o\left(b_{1}\right)=1$. This proves that $o_{1}=o\left(b_{1}\right)$.

Finally if, $o_{2} \neq o\left(b_{2}\right)$ then $o\left(b_{2}\right) \neq 0$. Hence b does not satisfy (3c). If $o_{1}=0$ then $\pm 1 \equiv \pm s_{2}^{y_{1}} \bmod p^{m}$ and the signs must agree for otherwise $p=2, m \geq 2$ and $-1 \equiv s_{2}^{y_{1}} \bmod 2^{m}$ which is only possible if y_{1} is odd and $s_{2} \equiv-1 \bmod 2^{m}$ contradicting $o\left(b_{2}\right) \neq 0$, i.e. b does not satisfy (3a). If $o_{1}=o_{2}$ then $o\left(b_{1}\right)=o_{1}=o_{2}<o\left(b_{2}\right)$ and hence, by assumption, $o_{1}=0$, which we have just seen is not possible. Thus b does not satisfy (3b) either. Hence, (3d) holds, i.e. $0<o\left(b_{2}\right)<o\left(b_{1}\right)<o\left(b_{2}\right)+n_{1}-n_{2}$. Thus $p^{o\left(b_{1}\right)-o\left(b_{2}\right)+1} \mid x_{2}$ and $p \nmid y_{2}$. Therefore $p^{o_{2}}<p^{o\left(b_{2}\right)}=\mathrm{o}_{p^{m}}\left(s_{2}\right)=\mathrm{o}_{p^{m}}\left(s_{1}^{x_{2}} s_{2}^{y_{2}}\right)=\mathrm{o}_{p^{m}}\left(r\left(\bar{b}_{2}\right)\right)$. Then, by (2.5), $p=2, o_{2}=0, o\left(b_{2}\right)=1$ and $\sigma_{2}=-1$, yielding the following contradiction:

$$
-1 \equiv r\left(\bar{b}_{2}\right) \equiv s_{1}^{x_{2}} s_{2}^{y_{2}} \equiv-1+2^{m-1} \bmod 2^{m}
$$

Hence $o_{2}=o\left(b_{2}\right)$.
Proposition 2.3. Let p be a prime integer and let G be a non-abelian group with $G^{\prime} \cong C_{p^{m}}$ and $G / G^{\prime} \cong$ $C_{p^{n_{1}}} \times C_{p^{n_{2}}}$ with $n_{2} \leq n_{1}$. Let $\sigma o=\left(\sigma_{1}, \sigma_{2}, o_{1}, o_{2}\right)$ and let r_{1} and r_{2} be given as in (1.1).
(1) If $p \neq 2$ then $\sigma_{1}=1$.
(2) If $\sigma_{1}=1$ then $\sigma_{2}=1$.
(3) If $n_{1}=n_{2}$ then $\sigma_{1}=\sigma_{2}$.
(4) One of the following conditions holds:
(a) $o_{1}=0$.
(b) $0<o_{1}=o_{2}$ and $\sigma_{1}=\sigma_{2}=-1$.
(c) $0=o_{2}<o_{1}$ and $n_{2}<n_{1}$.
(d) $0<o_{2}<o_{1}<o_{2}+n_{1}-n_{2}$. In particular, $n_{2}<n_{1}$.
(5) \mathcal{B} contains an element $\left(b_{1}, b_{2}\right)$ such that $a^{b_{i}}=a^{r_{i}}$ for every $a \in G^{\prime}$ and $i=1,2$.

Proof. (1) is a direct consequence of (2.4). Statements (2), (3) and (4) follow directly from Lemma 2.2. Fix $\left(b_{1}, b_{2}\right) \in \mathcal{B}^{\prime}$. Using (2.7) it easily follows that r_{i} and $r\left(b_{i}\right)$ generate the same multiplicative group in $\mathcal{U}_{p^{m}}$. Thus there are integers x and y with $p \nmid x y$ and $r_{i}=r\left(b_{i}\right)^{x_{i}}$. Then $\left(\bar{b}_{1}, \bar{b}_{2}\right)=\left(b_{1}^{x}, b_{2}^{y}\right) \in \mathcal{B}$ and $r\left(\bar{b}_{i}\right)=r_{i}$, i.e. $a^{b_{i}}=a^{r_{i}}$ for every $a \in G^{\prime}$. Therefore $\left(\bar{b}_{1}, \bar{b}_{2}\right) \in \mathcal{B}_{r}$.

In Proposition 2.3 we obtained some restrictions on σo. We now obtain some restrictions on the o_{i}^{\prime} 's and u_{i} 's. To this end, we fix $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}_{r}$. Recall that $\left|b_{i}\right|=p^{n_{i}+o_{i}^{\prime}(b)}$ and hence

$$
\begin{equation*}
0 \leq o_{i}^{\prime}(b)=m-v_{p}\left(t_{i}(b)\right) \leq m, \quad 1 \leq u_{i}(b) \leq p^{o_{i}^{\prime}(b)} \quad \text { and } \quad p \nmid u_{i}(b) \quad(i=1,2) \tag{2.8}
\end{equation*}
$$

From (1.2) and (2.2) it follows that:

$$
\begin{align*}
r_{i}^{p^{n_{i}}} & \equiv 1 \bmod p^{m} \tag{2.9}\\
t_{i}(b) r_{i} & \equiv t_{i}(b) \bmod p^{m} \tag{2.10}\\
\mathcal{S}\left(r_{1} \mid p^{n_{1}}\right) & \equiv t_{1}(b)\left(1-r_{2}\right) \bmod p^{m} \tag{2.11}\\
\mathcal{S}\left(r_{2} \mid p^{n_{2}}\right) & \equiv t_{2}(b)\left(r_{1}-1\right) \bmod p^{m} \tag{2.12}
\end{align*}
$$

Lemma 2.4. The following statements hold for every $b \in \mathcal{B}_{r}$:
(1) $o_{i}^{\prime}(b) \leq m-o_{i}$ and if $\sigma_{i}=-1$ then $o_{i}^{\prime}(b) \leq 1$ and $u_{i}(b)=1$, for each $i \in\{1,2\}$.
(2) $o_{i}<n_{i}$, for each $i \in\{1,2\}$.
(3) If $\sigma_{1}=1$ then the following conditions hold:
(a) $o_{2}+o_{1}^{\prime}(b) \leq m \leq n_{1}$ and if $m=n_{1}$ then $o_{1} o_{2}=0$.
(b) Either $o_{1}+o_{2}^{\prime}(b) \leq m \leq n_{2}$, or $2 m-o_{1}-o_{2}^{\prime}(b)=n_{2}<m$ and $u_{2}(b) \equiv 1 \bmod p^{m-n_{2}}$.
(4) If $\sigma_{1} \neq \sigma_{2}$ then one of the following conditions hold:
(a) $m \leq n_{2}$ and $o_{2}^{\prime}(b) \leq 1$.
(b) $m-o_{2}^{\prime}(b)+1=n_{2}<m, u_{2}(b)\left(1+2^{m-o_{1}-1}\right) \equiv-1 \bmod 2^{m-n_{2}}$ and $1 \leq u_{2}(b) \leq 2^{m-n_{2}+1}$.

Proof. For the proof of (1) we fix $i \in\{1,2\}$. Suppose first that $\sigma_{i}=-1$. Then $p=2, m \geq 2$ and $r_{i} \equiv$ $-1 \bmod 4$, by (2.4). Then $v_{2}\left(r_{i}-1\right)=2$ and from (2.8) and (2.10) it follows that $m-1 \leq v_{2}\left(t_{i}(b)\right)=m-o_{i}^{\prime}(b)$, so $o_{i}^{\prime}(b) \leq 1$ and $o_{i}+o_{i}^{\prime}(b) \leq m-1$, by (2.6). The former implies that $u_{i}(b)=1$. Suppose that $\sigma_{i}=1$. Then $v_{p}\left(r_{i}-1\right)=m-o_{i}$ and (2.8) and (2.10) imply that $m \leq v_{p}\left(t_{i}(b)\right)+v_{p}\left(r_{i}-1\right)=2 m-\left(o_{i}+o_{i}^{\prime}(b)\right)$. This proves (1).

For the proofs of (2), (3) and (4) we consider separately the different values of σ_{1} and σ_{2}.
Suppose that $\sigma_{1}=1$. Then $\sigma_{2}=1$, by Proposition 2.3 (2). Hence $v_{p}\left(r_{i}-1\right)=m-o_{i}$ and either p is odd or $r_{1} \equiv r_{2} \equiv 1 \bmod 4$. Thus $\mathrm{o}_{p^{m}}\left(r_{i}\right)=p^{o_{i}}$ and $v_{p}\left(\mathcal{S}\left(r_{i} \mid p^{n_{i}}\right)\right)=n_{i}$, by Lemma A. 2 (1). Then $o_{i} \leq n_{i}$, by (2.9), and combining this with (2.8), (2.11) and (2.12) we deduce that

$$
o_{2}+o_{1}^{\prime}(b) \leq m \leq n_{1} \text { or } n_{1}=2 m-o_{2}-o_{1}^{\prime}(b)<m
$$

and

$$
o_{1}+o_{2}^{\prime}(b) \leq m \leq n_{2} \text { or } n_{2}=2 m-o_{1}-o_{2}^{\prime}(b)<m .
$$

As $n_{2} \leq n_{1}$, if $n_{1}<m$ then we obtain a contradiction because

$$
2 m>n_{1}+n_{2}=4 m-\left(o_{2}+o_{1}^{\prime}(b)+o_{1}+o_{2}^{\prime}(b)\right) \geq 2 m
$$

by (1). Thus $o_{2}+o_{1}^{\prime}(b) \leq m \leq n_{1}$ and hence $o_{1}<m \leq n_{1}$. If $o_{2} \geq n_{2}$ then $n_{2}<m$ and hence

$$
m \geq o_{2}+o_{2}^{\prime}(b) \geq n_{2}+o_{2}^{\prime}(b)=2 m-o_{1}>m
$$

a contradiction. This proves (2) in this case. Moreover, if $n_{2}<m$ then by (2.12) and Lemma A. 1 (3)

$$
u_{2}(b) p^{n_{2}} \equiv u_{2}(b) p^{2 m-o_{2}^{\prime}(b)-o_{1}} \equiv t_{2}(b)\left(r_{1}-1\right) \equiv \mathcal{S}\left(r_{2} \mid p^{n_{2}}\right) \equiv p^{n_{2}} \bmod 2^{m}
$$

and hence $u_{2}(b) \equiv 1 \bmod p^{m-n_{2}}$. Finally assume that $m=n_{1}$. If $n_{2}=n_{1}$ then $o_{1}=0$, by Proposition 2.3 (4). Otherwise $n_{2}<n_{1}=m$ and hence $n_{2}=2 m-o_{1}-o_{2}^{\prime}(b)$. Then, by (1),

$$
n_{1}-n_{2}=m-n_{2}=-m+o_{1}+o_{2}^{\prime}(b) \leq o_{1}-o_{2} .
$$

Therefore $o_{2}=0$, by Proposition 2.3 (4). This proves (3).
Suppose that $\sigma_{2}=-1$. Then $\sigma_{1}=-1$, by Proposition 2.3 (2). Hence $p=2, m \geq 2, r_{i} \equiv-1 \bmod 4$ and $v_{2}\left(r_{i}+1\right)=m-o_{i}$ for $i=1,2$. Moreover, $v_{p}\left(t_{i}(b)\right)=m-o_{i}^{\prime}(b) \geq m-1$, by (1) and therefore $\mathcal{S}\left(r_{i} \mid 2^{n_{i}}\right) \equiv 0 \bmod 2^{m}$ by (2.11) and (2.12). By Lemma A. 2 (2)

$$
m \leq v_{2}\left(\mathcal{S}\left(r_{i} \mid 2^{n_{i}}\right)\right)=v_{2}\left(r_{i}+1\right)+n_{i}-1=m-o_{i}+n_{i}-1,
$$

that is $o_{i} \leq n_{i}-1$, proving (2) in this case.

Finally, suppose that $\sigma_{1}=-1$ and $\sigma_{2}=1$. Then $p=2, m \geq 2, r_{1} \equiv-1 \bmod 4$ and $r_{2} \equiv 1 \bmod 4$. By $(1), o_{1}^{\prime}(b) \leq 1$ and hence $v_{2}\left(t_{1}(b)\right)=m-o_{1}^{\prime}(b) \geq m-1$. Thus $t_{1}(b)\left(r_{2}-1\right) \equiv 0 \bmod 2^{m}$ and, by (2.11) and Lemma A. 2 (2),

$$
m \leq v_{2}\left(\mathcal{S}\left(r_{1} \mid 2^{n_{1}}\right)\right)=n_{1}+v_{2}\left(r_{1}+1\right)-1=n_{1}+m-o_{1}-1
$$

i.e. $o_{1} \leq n_{1}-1$. Moreover, as $r_{2} \equiv 1 \bmod 4$, by Lemma A. $2(1), v_{2}\left(\mathcal{S}\left(r_{2} \mid 2^{n_{2}}\right)\right)=n_{2}$ and hence (2.12) implies that either $m \leq n_{2}$ and $m \leq v_{p}\left(t_{2}(b)\right)+v_{2}\left(r_{1}-1\right)=m-o_{2}^{\prime}(b)+1$, or $m>n_{2}=m-o_{2}^{\prime}(b)+1$. In the former case $o_{2}<m \leq n_{2}$ and $o_{2}^{\prime}(b) \leq 1$. In the latter case, by (2.12) and Lemma A. 2 (3),

$$
u_{2}(b) 2^{n_{2}}\left(-1-2^{m-o_{1}-1}\right)=u_{2}(b) 2^{n_{2}-1}\left(-2-2^{m-o_{1}}\right)=t_{2}(b)\left(r_{1}-1\right) \equiv \mathcal{S}\left(r_{2} \mid p^{n_{2}}\right) \equiv 2^{n_{2}} \bmod 2^{m}
$$

Thus $o_{2} \leq m-o_{2}^{\prime}(b)<n_{2}$, which completes the proof of (2), and $u_{2}(b)\left(-1-2^{m-o_{1}}\right) \equiv 1 \bmod 2^{m-n_{2}}$, which proves (4).

Combining (2.6) and Lemma 2.4 we obtain the following:
Corollary 2.5. Let G be a finite non-abelian 2-generator cyclic-by-abelian group of prime-power order with $\operatorname{inv}(G)=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)$. Then the following statements hold:
(1) $o_{i}^{\prime} \leq m-o_{i}, o_{1}^{\prime} \leq m-o_{2}$ and if $\sigma_{i}=-1$ then $o_{i}^{\prime} \leq 1$ and $u_{i}=1$.
(2) $o_{i} \leq \min \left(m, n_{i}\right)-1$ and if $p=2$ and $m \geq 2$ then $o_{i} \leq m-2$.
(3) If $m>n_{1}$ then $\sigma_{1}=-1$.
(4) If $\sigma_{1}=1$ and $m=n_{1}$ then $o_{1} o_{2}=0$.
(5) Suppose that $\sigma_{1} \neq \sigma_{2}$.
(a) If $m \leq n_{2}$ then $o_{2}^{\prime} \leq 1$.
(b) If $m>n_{2}$ then $o_{2}^{\prime}=m+1-n_{2}, u_{2}\left(1+2^{m-o_{1}-1}\right) \equiv-1 \bmod 2^{m-n_{2}}$ and $1 \leq u_{2} \leq 2^{m-n_{2}+1}$.

3. Changing bases within \mathcal{B}_{r}

In the previous section we proved that $\mathcal{B}_{r} \neq \emptyset$. In this section $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}_{r}$ and $\bar{b}=\left(\bar{b}_{1}, \bar{b}_{2}\right)$ with $\bar{b}_{i} \equiv b_{1}^{x_{i}} b_{2}^{y_{i}}\left[b_{2}, b_{1}\right]^{z_{i}}$, where x_{i}, y_{i} and z_{i} are integers, for $i=1,2$.

The next lemma characterizes when \bar{b} belongs to \mathcal{B}_{r}.
Lemma 3.1. $\bar{b} \in \mathcal{B}_{r}$ if and only if the following conditions hold:
(1) $p^{n_{1}-n_{2}} \mid x_{2}$ and $x_{1} y_{2} \not \equiv x_{2} y_{1} \bmod p$.
(2) If $\sigma_{2}=-1$ then $x_{1} \not \equiv y_{1} \bmod 2$ and $x_{2} \not \equiv y_{2} \bmod 2$.
(3) (a) If $o_{1}=0$ then $y_{1} \equiv y_{2}-1 \equiv 0 \bmod p^{o_{2}}$.
(b) If $0<o_{1}=o_{2}$ then $x_{1}+y_{1} \equiv x_{2}+y_{2} \equiv 1 \bmod p^{o_{1}}$.
(c) If $o_{2}=0<o_{1}$ then $x_{1}-1 \equiv x_{2} \equiv 0 \bmod p^{o_{1}}$.
(d) If $0<o_{2}<o_{1}$ then $x_{1}+y_{1} p^{o_{1}-o_{2}} \equiv 1 \bmod p^{o_{1}}$ and $x_{2} p^{o_{2}-o_{1}}+y_{2} \equiv 1 \bmod p^{o_{2}}$. (Observe that $x_{2} p^{o_{2}-o_{1}} \in \mathbb{Z}$ because $o_{1}-o_{2}<n_{1}-n_{2}$, by Proposition 2.3 (4).)

Proof. Condition (1) is equivalent to $\bar{b} \in \mathcal{B}$, so we can take it for granted. Under this assumption, $\bar{b} \in \mathcal{B}_{r}$ if and only if $r_{i} \equiv r_{1}^{x_{i}} r_{2}^{y_{i}} \bmod p^{m}$, for $i=1,2$. Write $R_{i}=\sigma_{i} r_{i}$. Observe that if $\sigma_{i}=-1$ then $p=2, m \geq 2$ and $R_{i} \equiv 1 \bmod 4$. Therefore $\bar{b} \in \mathcal{B}_{r}$ if and only if

$$
\begin{equation*}
\sigma_{1}^{x_{1}-1} \sigma_{2}^{y_{1}}=\sigma_{1}^{x_{2}} \sigma_{2}^{y_{2}-1}=1 \quad \text { and } \quad R_{1}^{x_{1}-1} R_{2}^{y_{1}} \equiv R_{1}^{x_{2}} R_{2}^{y_{2}-1} \equiv 1 \bmod p^{m} \tag{3.1}
\end{equation*}
$$

By statements (2) and (3) of Proposition 2.3, the equalities on the left side of (3.1) are equivalent to (2). Moreover, $\mathrm{o}_{p^{m}}\left(R_{i}\right)=p^{o_{i}}$ and if $o_{1} o_{2} \neq 0$ then $o_{2} \leq o_{1}$ and $R_{2} \equiv R_{1}^{p^{o_{1}-o_{2}}} \bmod p^{m}$, by Proposition 2.3 (4) and (1.1). Hence the congruences on the right side of (3.1) are equivalent to the conditions in (3).

In the remainder of the section we assume that $\bar{b} \in \mathcal{B}_{r}$. We will describe the connection between the $o_{i}^{\prime}(b)$'s and $u_{i}(b)$'s with the $o_{i}^{\prime}(\bar{b})$'s and $u_{i}(\bar{b})$'s. We first obtain a general description and then specialize to three cases depending on the values of σ_{1} and σ_{2}.

Lemma 3.2. If $\bar{b} \in \mathcal{B}_{r}$ then

$$
\begin{align*}
t_{1}(\bar{b}) \alpha & \equiv x_{1} t_{1}(b)+y_{1} p^{n_{1}-n_{2}} t_{2}(b)+\beta_{1} \bmod p^{m} \tag{3.2}\\
t_{2}(\bar{b}) \alpha & \equiv x_{2} t_{1}(b) p^{n_{2}-n_{1}}+y_{2} t_{2}(b)+\beta_{2} \bmod p^{m} \tag{3.3}
\end{align*}
$$

where

$$
\begin{align*}
\alpha & =\mathcal{S}\left(r_{1} \mid x_{1}\right) \mathcal{S}\left(r_{2} \mid y_{2}\right) r_{2}^{y_{1}}-\mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right) r_{2}^{y_{2}} \tag{3.4}\\
\beta_{i} & =\mathcal{S}\left(r_{1} \mid x_{i}\right) \mathcal{S}\left(r_{2} \mid y_{i}\right) \mathcal{S}\left(r_{1}^{x_{i}}, r_{2}^{y_{i}} \mid p^{n_{i}}\right) \quad(i=1,2) \tag{3.5}
\end{align*}
$$

Proof. Let $a=\left[b_{2}, b_{1}\right]$ and $\bar{a}=\left[\bar{b}_{1}, \bar{b}_{2}\right]$. Observe that the hypothesis implies that

$$
r\left(b_{i}\right) \equiv r\left(\bar{b}_{i}\right) \equiv r_{i} \equiv r_{1}^{x_{i}} r_{2}^{y_{i}} \bmod p^{m}
$$

Therefore, by (2.1), for every $v, w \in \mathbb{Z}$

$$
\begin{equation*}
\left[a^{v}, b_{i}^{w}\right]=a^{v\left(r_{i}^{w}-1\right)} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[b_{2}^{w}, b_{1}^{v}\right]=a^{\mathcal{S}\left(r_{1} \mid v\right) \mathcal{S}\left(r_{2} \mid w\right)} \tag{3.7}
\end{equation*}
$$

By (2.1), (3.6) and (3.7)

$$
\bar{a}=a^{\alpha+\gamma}
$$

where $\gamma=z_{2}\left(r_{1}-1\right)+z_{1}\left(1-r_{2}\right)$; by (2.2) and (2.3)

$$
\begin{equation*}
\bar{b}_{i}^{p^{n_{i}}}=b_{1}^{x_{i} p^{n_{i}}} b_{2}^{y_{i} p^{n_{i}}} a^{\beta_{i}+z_{i} \mathcal{S}\left(r_{i} \mid p^{n_{i}}\right)} \tag{3.8}
\end{equation*}
$$

and as $p^{n_{1}-n_{2}} \mid x_{2}$

$$
\begin{aligned}
& a^{t_{1}(\bar{b})(\alpha+\gamma)}=\bar{a}^{t_{1}(\bar{b})}=\bar{b}_{1}^{p^{n_{1}}}=a^{x_{1} t_{1}(b)+y_{1} p^{n_{1}-n_{2}} t_{2}(b)+\beta_{1}+z_{1} \mathcal{S}\left(r_{1} \mid p^{n_{1}}\right)} \quad \text { and } \\
& a^{t_{2}(\bar{b})(\alpha+\gamma)}=\bar{a}^{t_{2}(\bar{b})}=\bar{b}_{2}^{p^{n_{2}}}=a^{x_{2} t_{1}(b) p^{n_{2}-n_{1}}+y_{2} t_{2}(b)+\beta_{2}+z_{2} \mathcal{S}\left(r_{2} \mid p^{n_{2}}\right)}
\end{aligned}
$$

By (2.10), (2.11) and (2.12) it is clear that $\gamma t_{i}(\bar{b}) \equiv z_{i} \mathcal{S}\left(r_{i} \mid p^{n_{i}}\right) \bmod p^{m}$ for $i=1,2$, so the statement follows.
Remark 3.3. An analogue of Lemma 3.2 was stated in the proof of [Mie75, Theorem 9]. Unfortunately, there is a mistake which leads to an incorrect version of condition (3.3). Namely, in our notation, the exponent of a in (3.8) for $i=2$ appears as $\beta_{2}+z_{2}\left(r_{2}-1\right) \mathcal{T}\left(r_{1}, r_{2} \mid p^{n_{2}}\right)$ in [Mie75], rather than $\beta_{2}+z_{2} \mathcal{S}\left(r_{2} \mid p^{n_{2}}\right)$. As a consequence some groups are missing in [Mie75]. A minimal example is provided by the groups G with $\operatorname{inv}(G)=(3,3,3,2,1,1,2,0,1,2,1, u)$ for $u \in\{1,4,7\}$. Only the group with $u=1$ appears in [Mie75].

Lemma 3.4. If $\bar{b} \in \mathcal{B}_{r}$ and $\sigma_{1}=1$ then

$$
\begin{equation*}
\left(x_{1} y_{2}-x_{2} y_{1}\right) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv x_{1} u_{1}(b) p^{m-o_{1}^{\prime}(b)}+y_{1} u_{2}(b) p^{m-o_{2}^{\prime}(b)+n_{1}-n_{2}}+B_{1} \bmod p^{m} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
A+\left(x_{1} y_{2}-x_{2} y_{1}\right) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv x_{2} u_{1}(b) p^{m-o_{1}^{\prime}(b)+n_{2}-n_{1}}+y_{2} u_{2}(b) p^{m-o_{2}^{\prime}(b)}+B_{2} \bmod p^{m} \tag{3.10}
\end{equation*}
$$

where

$$
A= \begin{cases}\left(\left(x_{1}-1\right) y_{2}-x_{2} y_{1}\right) 2^{n_{2}-1}, & \text { if } p=2 \text { and } 0<m-n_{2}=o_{1}-o_{2} \\ 0, & \text { otherwise }\end{cases}
$$

and for $i=1,2$

$$
B_{i}= \begin{cases}x_{i} y_{i} 2^{n_{i}-1}, & \text { if } p=2 \text { and } m=n_{1} \\ 0, & \text { otherwise }\end{cases}
$$

Proof. By Lemma 3.2, it is enough to prove the following:

$$
\begin{align*}
t_{1}(\bar{b}) \alpha & \equiv t_{1}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod p^{m} \tag{3.11}\\
t_{2}(\bar{b}) \alpha & \equiv A+t_{2}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod p^{m} \tag{3.12}\\
\beta_{i} & \equiv B_{i} \bmod p^{m} \quad(i=1,2) \tag{3.13}
\end{align*}
$$

By Corollary 2.5 (3) and Lemma A. 2 (1), $v_{p}\left(\mathcal{S}\left(r_{1} \mid p^{n_{1}}\right)\right)=n_{1} \geq m$, so using (2.10) and (2.11), it follows that

$$
\begin{aligned}
& t_{1}(\bar{b}) \alpha \equiv t_{1}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod p^{m} \\
& t_{2}(\bar{b}) \alpha \equiv t_{2}(\bar{b})\left(\mathcal{S}\left(r_{1} \mid x_{1}\right) y_{2}-\mathcal{S}\left(r_{1} \mid x_{2}\right) y_{1}\right) \bmod p^{m}
\end{aligned}
$$

This proves (3.11) and reduces the proof of (3.12) to the following:

$$
\begin{aligned}
& t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{1}\right) \equiv \begin{cases}t_{2}(\bar{b}) x_{1}+\left(x_{1}-1\right) 2^{n_{2}-1} \bmod 2^{m}, & \text { if } p=2 \text { and } 0<m-n_{2}=o_{1}-o_{2} ; \\
t_{2}(\bar{b}) x_{1} \bmod p^{m}, & \text { otherwise } ;\end{cases} \\
& t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{2}\right) \equiv \begin{cases}t_{2}(\bar{b}) x_{2}+x_{2} 2^{n_{2}-1} \bmod 2^{m}, & \text { if } p=2 \text { and } 0<m-n_{2}=o_{1}-o_{2} ; \\
t_{2}(\bar{b}) x_{2} \bmod p^{m}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

By Lemma 2.4 (3), if $m \leq n_{2}$ then $v_{p}\left(t_{2}(\bar{b})\right)+v_{p}\left(r_{1}-1\right)=2 m-o_{1}-o_{2}^{\prime}(\bar{b}) \geq m$, and hence $t_{2}(\bar{b}) r_{i} \equiv r_{i} \bmod p^{m}$ and $t_{2}(\bar{b}) \mathcal{S}\left(r_{i} \mid x_{i}\right) \equiv t_{2}(\bar{b}) x_{i} \bmod p^{m}$. Otherwise $2 m-o_{1}-o_{2}^{\prime}(\bar{b})=n_{2}<m$, and since $o_{2}^{\prime}(\bar{b}) \leq m$, it follows that $o_{1} \neq 0$. By Lemmas 2.4 (1) and 3.1 (3),

$$
m-n_{2}=o_{2}^{\prime}(\bar{b})+o_{1}-m \leq o_{1}-o_{2} \leq \min \left(v_{p}\left(x_{1}-1\right), v_{p}\left(x_{2}\right)\right) .
$$

Applying Lemma A. 2 (3) we derive that, for $i=1,2$,

$$
\mathcal{S}\left(r_{1} \mid x_{i}\right) \equiv \begin{cases}x_{i}+2^{o_{2}^{\prime}(\bar{b})-1} \bmod 2^{o_{2}^{\prime}(\bar{b})}, & \text { if } p=2, m-n_{2}=o_{1}-o_{2} \text { and } x_{i} \not \equiv 1 \bmod 2^{m-n_{2}+1} ; \\ x_{i} \bmod p^{o_{2}^{\prime}(\bar{b})}, & \text { otherwise. }\end{cases}
$$

As $o_{2}^{\prime}(\bar{b})=m-v_{p}\left(t_{2}(\bar{b})\right)$,

$$
t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{i}\right) \equiv \begin{cases}t_{2}(\bar{b}) x_{i}+2^{m-1} \bmod 2^{m}, & \text { if } p=2, m-n_{2}=o_{1}-o_{2} \text { and } x_{i} \not \equiv 0 \bmod 2^{m-n_{2}+1} ; \\ t_{2}(\bar{b}) x_{i} \bmod p^{m}, & \text { otherwise }\end{cases}
$$

Since $0<m-n_{2} \leq \min \left(v_{p}\left(x_{2}\right), v_{p}\left(x_{1}-1\right)\right)$ we deduce that

$$
\begin{aligned}
& t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{2}\right) \equiv \begin{cases}t_{2}(\bar{b}) x_{2}+x_{2} 2^{n_{2}-1} \bmod 2^{m}, & \text { if } p=2 \text { and } m-n_{2}=o_{1}-o_{2} ; \\
t_{2}(\bar{b}) x_{2} \bmod p^{m}, & \text { otherwise } ;\end{cases} \\
& t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{1}\right) \equiv \begin{cases}t_{2}(\bar{b}) x_{1}+\left(x_{1}-1\right) 2^{n_{2}-1} \bmod 2^{m}, & \text { if } p=2 \text { and } m-n_{2}=o_{1}-o_{2} ; \\
t_{2}(\bar{b}) x_{1} \bmod p^{m}, & \text { otherwise; }\end{cases}
\end{aligned}
$$

and (3.12) follows.
By Lemma A. 3

$$
\beta_{1} \equiv \begin{cases}\mathcal{S}\left(r_{1} \mid x_{1}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right) 2^{n_{1}-1} \bmod 2^{m}, & \text { if } p=2 \\ 0 \bmod p^{m}, & \text { otherwise }\end{cases}
$$

This proves (3.13) for $i=1$ when $p \neq 2$ or $m \neq n_{1}$. Otherwise, by Lemma A. 1 (1),

$$
\beta_{1} \equiv x_{1} y_{1} 2^{n_{1}-1}=B_{i} \bmod 2^{m}
$$

as desired. Finally, for the proof of (3.13) for $i=2$, recall that $p^{n_{1}-n_{2}} \mid x_{2}$, and hence, by Lemma A. 2 (1), $p^{n_{1}-n_{2}} \mid \mathcal{S}\left(r_{1} \mid x_{2}\right)$. Moreover, by Lemma A.3, if $p>2$ then $p^{n_{2}} \mid \mathcal{T}\left(r_{1}^{x_{2}}, r_{2}^{y_{2}} \mid p^{n_{2}}\right)$, so $\beta_{2} \equiv 0 \equiv B_{2} \bmod p^{m}$. Assume $p=2$. Then by the same lemma $\mathcal{T}\left(r_{1}^{x_{2}}, r_{2}^{y_{2}} \mid 2^{n_{2}}\right) \equiv 2^{n_{2}-1} \bmod 2^{n_{2}}$. Thus

$$
\mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{T}\left(r_{1}^{x_{2}}, r_{2}^{y_{2}} \mid p^{n_{2}}\right) \equiv \mathcal{S}\left(r_{1} \mid x_{2}\right) 2^{n_{2}-1} \bmod 2^{n_{1}} .
$$

As $v_{2}\left(x_{2}\right) \geq n_{1}-n_{2}$, if $n_{1}>m$ then clearly this expression vanishes modulo 2^{m} and hence $\beta_{2} \equiv B_{2} \bmod 2^{m}$. Otherwise, $m=n_{1}$ and

$$
\mathcal{S}\left(r_{2} \mid x_{2}\right) 2^{n_{2}-1} \equiv x_{2} 2^{n_{2}-1} \bmod 2^{m} .
$$

Thus $\beta_{2} \equiv x_{2} y_{2} 2^{n_{2}-1}=B_{2} \bmod 2^{m}$. This proves (3.13).
Lemma 3.5. If $\bar{b} \in \mathcal{B}_{r}, \sigma_{1}=-1$ and $\sigma_{2}=1$ then

$$
\begin{aligned}
t_{1}(\bar{b}) \alpha & \equiv t_{1}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod 2^{m} ; \\
t_{2}(\bar{b}) \alpha & \equiv \begin{cases}t_{2}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod 2^{m}, & \text { if } n_{2} \geq m ; \\
t_{2}(\bar{b}) y_{2}+\left(\left(x_{1}-1\right) y_{2}-x_{2} y_{1}\right) 2^{m-o_{1}+o_{2}-1} \bmod 2^{m}, & \text { if } o_{2}+1=n_{2}<m \text { and } o_{1}>0 \\
t_{2}(\bar{b}) y_{2} \bmod 2^{m}, & \text { otherwise } ;\end{cases} \\
\beta_{1} & \equiv y_{1} 2^{n_{1}-1} \bmod 2^{m} ; \\
\beta_{2} & \equiv \begin{cases}x_{2} 2^{m-n_{1}} \bmod 2^{m}, & \text { if } n_{1}=o_{1}+1, o_{2}=0<o_{1}, \text { and } n_{2}=1 ; \\
0 \bmod 2^{m}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof. Since $\sigma_{1}=-1$ and $\sigma_{2}=1$, it follows that $p=2, n_{1}>n_{2}, o_{1}^{\prime}(\bar{b}) \leq 1$ and $u_{1}(\bar{b})=1$ by Proposition 2.3 and Lemma 2.4 (1). Moreover, $2^{n_{1}-n_{2}} \mid x_{2}$ and $2 \nmid x_{1} y_{2}$ by Lemma 3.1, and $t_{i}(\bar{b}) r_{i} \equiv t_{i}(\bar{b}) \bmod 2^{m}$, by (2.10). By $(2.11), t_{1}(\bar{b})\left(r_{2}-1\right) \equiv \mathcal{S}\left(r_{1} \mid 2^{n_{1}}\right) \bmod 2^{m}$ and, by Lemma A. 2 (2) and Lemma 2.4 (2), $v_{2}\left(\mathcal{S}\left(r_{1} \mid 2^{n_{1}}\right)\right)=n_{1}+m-o_{1}-1 \geq m$. So the first congruence follows.

Moreover $t_{2}(\bar{b}) \alpha \equiv t_{2}(\bar{b})\left(\mathcal{S}\left(r_{1} \mid x_{1}\right) y_{2}-\mathcal{S}\left(r_{1} \mid x_{2}\right) y_{1}\right) \bmod 2^{m}$. If $n_{2} \geq m$ then, by (2.12) and Lemma A. 2 (1),

$$
t_{2}(\bar{b})\left(r_{1}-1\right) \equiv \mathcal{S}\left(r_{2} \mid 2^{n_{2}}\right) \equiv 0 \bmod 2^{m}
$$

so

$$
t_{2}(\bar{b}) \alpha \equiv t_{2}(\bar{b})\left(x_{1} y_{2}-x_{2} y_{1}\right) \bmod 2^{m}
$$

Otherwise, $m>n_{2}=m-o_{2}^{\prime}(\bar{b})+1$, by Lemma 2.4 (4). If $o_{1}=0$ then $r_{1} \equiv-1 \bmod 2^{m}$, so $\mathcal{S}\left(r_{1} \mid x_{1}\right) \equiv$ $1 \bmod 2^{m}$ and $\mathcal{S}\left(r_{1} \mid x_{2}\right) \equiv 0 \bmod 2^{m}$, since $2 \nmid x_{1}$ and $2 \mid x_{2}$. Hence $t_{2}(\bar{b}) \alpha \equiv t_{2}(\bar{b}) y_{2} \bmod 2^{m}$. Assume that $o_{1} \neq 0$. Then $o_{1}>o_{2}$ by Proposition 2.3 (4), and $x_{1}-1 \equiv x_{2} \equiv 0 \bmod 2^{o_{1}-o_{2}}$ by Lemma 3.1. So
$v_{2}\left(t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{2}\right)\right)=m-o_{2}^{\prime}(\bar{b})+v_{2}\left(r_{1}+1\right)-1+v_{2}\left(x_{2}\right)=2 m-o_{2}^{\prime}(\bar{b})-o_{1}-1+v_{2}\left(x_{2}\right) \geq 2 m-o_{2}^{\prime}(\bar{b})-o_{2}-1 \geq m-1$, by Lemma 2.4 (1). Moreover, $v_{2}\left(t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{2}\right)\right)=m-1$ if and only if $v_{2}\left(x_{2}\right)=o_{1}-o_{2}$ and $m-o_{2}=o_{2}^{\prime}(\bar{b})$ if and only if $v_{2}\left(x_{2}\right)=o_{1}-o_{2}$ and $n_{2}=o_{2}+1$ (because $\left.m-o_{2}^{\prime}(\bar{b})+1=n_{2}\right)$. Therefore, if $o_{1} \neq 0$ then

$$
t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{2}\right) \equiv \begin{cases}x_{2} 2^{m+o_{2}-o_{1}-1} \bmod 2^{m}, & \text { if } o_{2}+1=n_{2}<m \\ 0, & \text { otherwise }\end{cases}
$$

Similar arguments yield
$t_{2}(\bar{b}) \mathcal{S}\left(r_{1} \mid x_{1}\right)=t_{2}(\bar{b})+t_{2}(\bar{b}) r_{1} \mathcal{S}\left(r_{1} \mid x_{1}-1\right) \equiv \begin{cases}t_{2}(\bar{b})+\left(x_{1}-1\right) 2^{m+o_{2}-o_{1}-1} \bmod 2^{m}, & \text { if } o_{2}+1=n_{2}<m ; \\ t_{2}(\bar{b}) \bmod 2^{m}, & \text { otherwise } .\end{cases}$
This proves the second congruence.
As $x_{1}-1$ is even, by Lemma A. 2 (2), Lemma A. 3 and Lemma 2.4 (2)

$$
v_{2}\left(\mathcal{S}\left(r_{1} \mid x_{1}-1\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right)\right)=v_{2}\left(x_{1}-1\right)+m-o_{1}-1+n_{1}-1 \geq m-o_{1}-1+n_{1} \geq m
$$

By Lemma A.1, $y_{1}+\left(r_{2}-1\right) \mathcal{T}\left(r_{2}, 1 \mid y_{1}\right)=\mathcal{S}\left(r_{2} \mid y_{1}\right)$, and by Lemma A.3,

$$
v_{2}\left(\left(r_{2}-1\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right)\right)=m-o_{2}+n_{1}-1 \geq m-o_{2}+n_{2}-1 \geq m
$$

Thus, using Lemma A. 1 (4) and Lemma A. 4 we conclude that

$$
\begin{aligned}
\beta_{1} & \equiv \mathcal{S}\left(r_{1} \mid x_{1}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right) \\
& \equiv\left(1+r_{1} \mathcal{S}\left(r_{1} \mid x_{1}-1\right)\right) \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right) \\
& \equiv \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right) \\
& \equiv\left(y_{1}+\left(r_{2}-1\right) \mathcal{T}\left(r_{2}, 1 \mid y_{1}\right)\right) \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right) \\
& \equiv y_{1} \mathcal{T}\left(r_{1}^{x_{1}}, r_{2}^{y_{1}} \mid 2^{n_{1}}\right) \\
& \equiv y_{1} 2^{n_{1}-1} \bmod 2^{m}
\end{aligned}
$$

This proves the third congruence.
Lemma A. 1 and Lemma 2.4 (2) yield
$v_{2}\left(\beta_{2}\right)=v_{2}\left(\mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{2}\right) \mathcal{T}\left(r_{1}^{x_{2}}, r_{2}^{y_{2}} \mid 2^{n_{2}}\right)\right)=v_{2}\left(r_{1}+1\right)-1+v_{2}\left(x_{2}\right)+n_{2}-1 \geq m-o_{1}-1+n_{1}-1 \geq m-1$.

Therefore $v_{2}\left(\beta_{2}\right)=m-1$ if and only if $n_{1}=o_{1}+1$ and $v_{2}\left(x_{2}\right)=n_{1}-n_{2}$. In that case $o_{1}>0$, since $n_{1}>n_{2}$; and $o_{2}+n_{1}-n_{2}=o_{2}+o_{1}-n_{2}+1 \leq o_{1}$, by Lemma 2.4 (2). Using Proposition 2.3 (4), we deduce that if $v_{2}\left(\beta_{2}\right)=m-1$ then $o_{2}=0<o_{1}$, and so $2^{o_{1}} \mid x_{2}$, by Lemma 3.1. Then $o_{1}+1-n_{2}=n_{1}-n_{2}=v_{2}\left(x_{2}\right) \geq o_{1}$, which implies $n_{2}=1$. This yields the last congruence.

Lemma 3.6. Suppose that $\bar{b} \in \mathcal{B}_{r}, \sigma_{1}=-1$ and $\sigma_{2}=1$.
(1) If $m \leq n_{2}$ then

- $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}(b) \leq 1, o_{2}^{\prime}(\bar{b}) \leq 1, o_{2}^{\prime}(b) \leq 1$, and
- $o_{2}^{\prime}(\bar{b}) \neq o_{2}^{\prime}(b)$ if and only if $v_{2}\left(x_{2}\right)=n_{1}-n_{2}$ and $o_{1}^{\prime}(b)=1$.
(2) If $m>n_{2}$ then
- $o_{1}^{\prime}(b) \leq 1, o_{1}^{\prime}(\bar{b}) \leq 1$,
- $o_{1}^{\prime}(b) \neq o_{1}^{\prime}(\bar{b})$ if and only if $2 \nmid y_{1}$ and $n_{1}=o_{1}+1$, and
- the following congruence holds:

$$
\begin{equation*}
\left(u_{2}(\bar{b})-u_{2}(b)\right) 2^{n_{2}-1}+A \equiv x_{2} 2^{m-o_{1}^{\prime}(b)+n_{2}-n_{1}}+B \bmod 2^{m} \tag{3.14}
\end{equation*}
$$

where

$$
A= \begin{cases}\left(\left(x_{1}-1\right) y_{2}-x_{2} y_{1}\right) 2^{m-o_{1}+o_{2}-1}, & \text { if } o_{2}+1=n_{2} \text { and } o_{1}>0 \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
B= \begin{cases}x_{2} 2^{m-n_{1}}, & \text { if } n_{1}=o_{1}+1, o_{2}=0<o_{1}, \text { and } n_{2}=1 \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. By Proposition 2.3, $p=2, n_{1}>n_{2}$ and hence, by Lemma 3.1 (1), $2 \mid x_{2}$ and $2 \nmid x_{1} y_{2}$. Moreover, by Lemma $2.4(1)$, each of $o_{1}^{\prime}(b)$ and $o_{1}^{\prime}(\bar{b})$ is at most 1 and $u_{1}(b)=u_{1}(\bar{b})=1$, so $t_{1}(b)=2^{m-o_{1}^{\prime}(b)}$ and $t_{1}(\bar{b})=2^{m-o_{1}^{\prime}(\bar{b})}$.
(1) Suppose first that $m \leq n_{2}$. Then $n_{1}>n_{2} \geq m>o_{1}$, and hence, by Lemma $3.5, \beta_{1} \equiv \beta_{2} \equiv 0 \bmod 2^{m}$. By (2.12) and Lemma A. $1(1)$ also $t_{2}(\bar{b})\left(r_{1}-1\right) \equiv \mathcal{S}\left(r_{2} \mid p^{n_{2}}\right) \equiv 0 \bmod p^{m}$, therefore

$$
m \leq v_{2}\left(t_{2}(\bar{b})\right)+v_{2}\left(r_{1}-1\right)=m-o_{2}^{\prime}(\bar{b})+1
$$

and consequently $o_{2}^{\prime}(\bar{b}) \leq 1, t_{2}(\bar{b})=p^{m-o_{2}^{\prime}(\bar{b})}$ and $t_{2}(b) 2^{n_{1}-n_{2}} \equiv 0 \bmod 2^{m}$. Then Lemmas 3.2 and 3.5 imply $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}(b)$ and

$$
2^{m-o_{2}^{\prime}(\bar{b})} \equiv x_{2} 2^{m-o_{1}^{\prime}(b)+n_{2}-n_{1}}+2^{m-o_{2}^{\prime}(b)} \bmod 2^{m}
$$

As both $o_{2}^{\prime}(\bar{b})$ and $o_{2}^{\prime}(b)$ are at most 1 and $2^{n_{1}-n_{2}} \mid x_{2}$, it follows that $o_{2}^{\prime}(\bar{b}) \neq o_{2}^{\prime}(b)$ if and only if $v_{2}\left(x_{2}\right)=$ $n_{1}-n_{2}+o_{1}^{\prime}(b)-1$ if and only if $v_{2}\left(x_{2}\right)=n_{1}-n_{2}$ and $o_{1}^{\prime}(b)=1$.
(2) Suppose now that $m>n_{2}$. Then $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}(b)=m-n_{2}+1>1$, by Lemma 2.4 (4). Thus Lemma 3.5 yields that (3.3) takes the form of (3.14).

We claim that

$$
y_{1} t_{2}(b) 2^{n_{1}-n_{2}}+y_{1} 2^{n_{1}-1} \equiv \begin{cases}y_{1} 2^{m-1} \bmod 2^{m}, & \text { if } n_{1}=o_{1}+1 \tag{3.15}\\ 0 \bmod 2^{m}, & \text { otherwise }\end{cases}
$$

Indeed,

$$
y_{1} t_{2}(b) 2^{n_{1}-n_{2}}+y_{1} 2^{n_{1}-1} \equiv y_{1} 2^{n_{1}-1}\left(u_{2}(b)+1\right) \bmod 2^{m}
$$

and, by Lemma $2.4(4), u_{2}(b)\left(-1+2^{m-o_{1}-1}\right) \bmod 2^{m-n_{2}}$. Thus $v_{2}\left(u_{2}(b)+1\right) \geq \min \left(m-n_{2}, m-o_{1}-1\right)$. Moreover $n_{1}>n_{2}$, and therefore $n_{1}-1+m-n_{2} \geq m$ and $n_{1}-1+m-o_{1}-1 \geq m-1$. Hence, from Lemma $2.4(2)$, it follows that $n_{1}-1+v_{2}\left(u_{2}(b)+1\right)=m-1$ if and only if $n_{1}=o_{1}+1$. Therefore (3.15) follows.

By (3.2) and Lemma 3.5, and recalling that each of $o_{1}^{\prime}(b)$ and $o_{1}^{\prime}(\bar{b})$ is at most 1 and $2 \nmid x_{1} y_{2}$ and $2 \mid x_{2}$, we deduce that the left-hand side of (3.15) is congruent modulo 2^{m} to $2^{m-o_{1}^{\prime}(\bar{b})}-2^{m-o_{1}^{\prime}(b)}$. Hence, $o_{1}^{\prime}(b) \neq o_{1}^{\prime}(\bar{b})$ if and only if $n_{1}=o_{1}+1$ and $2 \nmid y_{1}$, as desired.

Lemma 3.7. If $\bar{b} \in \mathcal{B}_{r}$ and $\sigma_{2}=-1$ then

$$
\begin{align*}
2^{m-o_{1}^{\prime}(\bar{b})} & \equiv x_{1} 2^{m-o_{1}^{\prime}(b)}+y_{1} 2^{m-o_{2}^{\prime}(b)+n_{1}-n_{2}} \bmod 2^{m} \tag{3.16}\\
2^{m-o_{2}^{\prime}(\bar{b})} & \equiv x_{2} 2^{m-o_{1}^{\prime}(b)+n_{2}-n_{1}}+y_{2} 2^{m-o_{2}^{\prime}(b)}+B \bmod 2^{m} \tag{3.17}
\end{align*}
$$

where B is as in Lemma 3.6.
Proof. Since $\sigma_{2}=-1$, by Proposition 2.3, Lemma 2.4 (1) and Lemma 3.1, $p=2, \sigma_{1}=-1, x_{1} \equiv y_{2} \bmod 2$, $x_{1} \not \equiv x_{2} \bmod 2, x_{2} \equiv y_{1} \bmod 2$, and, for $i \in\{1,2\}, u_{i}(b)=u_{i}(\bar{b})=1$ and each of $o_{i}^{\prime}(b)$ and $o_{i}^{\prime}(\bar{b})$ is at most 1. Then

$$
t_{i}(\bar{b})\left(r_{i}-1\right) \equiv t_{1}(\bar{b})\left(r_{2}-1\right) \equiv t_{2}(\bar{b})\left(r_{1}-1\right) \equiv 0 \bmod 2^{m}
$$

so

$$
t_{i}(\bar{b}) \alpha \equiv\left(x_{1} y_{2}-x_{2} y_{1}\right) 2^{m-o_{i}^{\prime}(\bar{b})} \equiv 2^{m-o_{i}^{\prime}(\bar{b})} \bmod 2^{m}
$$

and $t_{i}(b)=2^{m-o_{i}^{\prime}(b)}$. Thus, by Lemma 3.2 it suffices to prove that $\beta_{1} \equiv 0 \bmod 2^{m}$ and $\beta_{2} \equiv B \bmod 2^{m}$.
By Lemma A. 2 (2) and Lemma A. 3

$$
v_{2}\left(\beta_{1}\right) \equiv \begin{cases}v_{2}\left(r_{1}+1\right)+v_{2}\left(x_{1}\right)+n_{1}-2=m-o_{1}+v_{2}\left(x_{1}\right)+n_{1}-2 \geq m+v_{2}\left(x_{1}\right)-1, & \text { if } 2 \mid x_{1} \\ v_{2}\left(r_{2}+1\right)+v_{2}\left(y_{1}\right)+n_{1}-2=m-o_{2}+v_{2}\left(y_{1}\right)+n_{1}-2 \geq m+v_{2}\left(y_{1}\right)-1, & \text { otherwise }\end{cases}
$$

In both cases $v_{2}\left(\beta_{1}\right) \geq m$, so $\beta_{1} \equiv 0 \bmod 2^{m}$.
Arguing similarly, in combination with Lemma 3.1, we obtain

$$
v_{2}\left(\beta_{2}\right) \equiv \begin{cases}m-o_{1}+v_{2}\left(x_{2}\right)+n_{2}-2 \geq m-o_{1}+n_{1}-2 \geq m-1, & \text { if } 2 \mid x_{2} \\ m-o_{2}+v_{2}\left(y_{2}\right)+n_{2}-2 \geq m+v_{2}\left(y_{2}\right)-1 \geq m, & \text { otherwise }\end{cases}
$$

Thus either $\beta_{2} \equiv 0 \bmod 2^{m}$ or $\beta_{2} \equiv 2^{m-1} \bmod 2^{m}, v_{2}\left(x_{2}\right)=n_{1}-n_{2}>0$ and $n_{1}=o_{1}+1$. In the latter case $o_{2}<o_{2}+n_{1}-n_{2}=o_{2}+o_{1}+1-n_{2} \leq o_{1}$, by Corollary 2.5 (2). Hence $o_{2}=0<o_{1}$, by Proposition 2.3 (4), and $o_{1}+1-n_{2}=n_{1}-n_{2}=v_{2}\left(x_{2}\right) \geq o_{1}$, by Lemma 3.1, so $n_{2}=1$. Thus $\beta_{2} \equiv 2^{m-1} \bmod 2^{m}$ if and only if $n_{1}=o_{1}+1, o_{2}=0<o_{1}=v_{2}\left(x_{2}\right)$ and $n_{2}=1$. This proves that $\beta_{2} \equiv B \bmod 2^{m}$.

4. Description of \mathcal{B}_{r}^{\prime} and conditions on o_{1}^{\prime} AND o_{2}^{\prime}

Recall that \mathcal{B}_{r}^{\prime} is formed by the basis $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}_{r}$ such that $o^{\prime}(b)=\left(o_{1}^{\prime}, o_{2}^{\prime}\right)$, or equivalently $\left(\left|b_{1}\right|,\left|b_{2}\right|\right) \geq_{\text {lex }}\left(\left|\bar{b}_{1}\right|,\left|\bar{b}_{2}\right|\right)$ for every $\bar{b} \in \mathcal{B}_{r}$. In this section $b=\left(b_{1}, b_{2}\right)$ is a fixed element of \mathcal{B}_{r} and the goal is to obtain necessary and sufficient conditions for $b \in \mathcal{B}_{r}^{\prime}$ in terms of conditions on the entries of $o^{\prime}(b)=\left(o_{1}^{\prime}(b), o_{2}^{\prime}(b)\right)$. The arguments in the proof of Lemma 4.2, 4.3 and 4.4 are repetitive, so with the aim of avoiding repetitions we explain now the structure of the proofs. In all cases we must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if $o^{\prime}(b)$ satisfies certain conditions. We have a generic element $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}\left[b_{2}, b_{1}\right]^{z_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\left[b_{2}, b_{1}\right]^{z_{2}}\right)$ in \mathcal{B}_{r} and we compare $o^{\prime}(b)$ and $o^{\prime}(\bar{b})$ using the results of the previous section. For the direct implication we assume that $b \in \mathcal{B}_{r}^{\prime}$ and select several $\bar{b} \in \mathcal{B}_{r}$ to deduce the conditions on $o^{\prime}(b)$ from the inequality $o^{\prime}(b) \geq_{\text {lex }} o^{\prime}(\bar{b})$. For the reverse implication we assume that $b \notin \mathcal{B}_{r}^{\prime}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ and deduce from $o^{\prime}(b)<o^{\prime}(\bar{b})$ that $o^{\prime}(b)$ does not satisfy the given conditions. In both cases it is important to recall Lemma 3.1 because it establishes when \bar{b} belongs to \mathcal{B}_{r}. Moreover, A, B and the B_{i} 's are as in Lemmas 3.4, 3.6 or 3.7, depending on the case considered, and always relative to the \bar{b} used in each case.

The following straightforward observation is often used.
Remark 4.1. Let X, Y, Z, W and T be integers.
(1) If $v_{p}(X), v_{p}(Y) \leq m$ and $Y \equiv X W+Z \bmod p^{m}$ then

$$
v_{p}(X) \leq v_{p}(Y) \quad \text { if and only if } \quad v_{p}(X) \leq v_{p}(Z)
$$

(2) If $v_{2}(X), v_{2}(Y) \leq m$ and $Y \equiv X W+Z+T 2^{m-1} \bmod 2^{m}$ then
$v_{2}(X) \leq v_{2}(Y)$ if and only if one of the following holds: $\left\{\begin{array}{l}2 \mid T \text { and } v_{2}(X) \leq v_{2}(Z) ; \\ 2 \nmid T, v_{2}(X) \leq m-1 \text { and } v_{2}(X) \leq v_{2}(Z) ; \\ 2 \nmid T, v_{2}(X)=m \text { and } v_{2}(Z)=m-1 .\end{array}\right.$
Lemma 4.2. Suppose that $\sigma_{1}=1$ and $b \in \mathcal{B}_{r}$. Then $b \in \mathcal{B}_{r}^{\prime}$ if and only if the following conditions hold:
(1) If $o_{1}=0$ then either
(a) $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+o_{2}+n_{1}-n_{2}$ and $\max \left(p-2, o_{2}^{\prime}(b), n_{1}-m\right)>0$, or
(b) $p=2, m=n_{1}, o_{2}^{\prime}(b)=0$ and $o_{1}^{\prime}(b)=1$.
(2) If $o_{2}=0<o_{1}$ then $\max \left(p-2, o_{1}^{\prime}(b), n_{1}-m\right)>0$ and

$$
o_{1}^{\prime}(b)+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+n_{1}-n_{2} .
$$

(3) If $o_{1} o_{2} \neq 0$ then $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+n_{1}-n_{2}$.

Proof. By Proposition 2.3 (2) $\sigma_{2}=1$, and by Lemma 3.4 the congruences (3.9) and (3.10) hold for each $\bar{b} \in \mathcal{B}_{r}$. We will use this without explicit mention. We consider separately three cases.

Case (i). Suppose that if $p=2$ then $m \neq n_{1}$ and either $m \leq n_{2}$ or $m-n_{2} \neq o_{1}-o_{2}$. Then $A=B_{1}=B_{2}=0$. We now apply Remark 4.1 (1) to (3.9), with

$$
Y=\left(x_{1} y_{2}-x_{2} y_{1}\right) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})}, \quad X=u_{1}(b) p^{m-o_{1}^{\prime}(b)} \quad \text { and } \quad Z=y_{1} u_{2}(b) p^{m-o_{2}^{\prime}(b)+n_{1}-n_{2}}
$$

and to (3.10), with

$$
Y=\left(x_{1} y_{2}-x_{2} y_{1}\right) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})}, \quad X=u_{2}(b) p^{m-o_{2}^{\prime}(b)} \quad \text { and } \quad Z=x_{2} u_{1}(b) p^{m-o_{1}^{\prime}(b)+n_{2}-n_{1}}
$$

It follows that $o^{\prime}(\bar{b}) \leq_{\text {lex }} o^{\prime}(b)$ if and only if

$$
\begin{equation*}
o_{2}^{\prime}(b) \leq v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b}) \text { then } o_{1}^{\prime}(b) \leq v_{2}\left(x_{2}\right)+n_{2}-n_{1}+o_{2}^{\prime}(b) \tag{4.2}
\end{equation*}
$$

Suppose that $b \in \mathcal{B}_{r}^{\prime}$ and consider several $\bar{b} \in \mathcal{B}_{r}$. If $o_{1}=0$ then we take $\bar{b}=\left(b_{1} b_{2}^{p^{p_{2}}}, b_{2}\right) \in \mathcal{B}_{r}$, so (4.1) takes the form $o_{2}^{\prime}(b) \leq o_{2}+n_{1}-n_{2}+o_{1}^{\prime}(b)$ and then we take $\bar{b}=\left(b_{1}, b_{1}^{p^{n_{1}-n_{2}}} b_{2}\right) \in \mathcal{B}_{r}$, so (4.2) yields $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$. Thus condition (1) holds. If $o_{2}=0<o_{1}$ then we take $\bar{b}=\left(b_{1} b_{2}, b_{2}\right) \in \mathcal{B}_{r}$, so (4.1) yields $o_{2}^{\prime}(b) \leq n_{1}-n_{2}+o_{1}^{\prime}(b)$, and then we take $\bar{b}=\left(b_{1}, b_{1}^{p^{\max \left(n_{1}-n_{2}, o_{1}\right)}} b_{2}\right) \in \mathcal{B}_{r}$ which using (4.2) yields $o_{1}^{\prime}(b) \leq \max \left(0, o_{1}-n_{1}+n_{2}\right)+o_{2}^{\prime}(b)$. Thus condition (2) holds. Finally, if $o_{1} o_{2} \neq 0$ then $o_{2}<o_{1}<o_{2}+n_{1}-n_{2}$ by Proposition 2.3 (4). In this case we take $\bar{b}=\left(b_{1}^{1-p^{o_{1}-o_{2}}} b_{2}, b_{2}\right) \in \mathcal{B}_{r}$, and (4.1) yields $o_{2}^{\prime}(b) \leq n_{1}-n_{2}+o_{1}^{\prime}(b)$, and then we take $\bar{b}=\left(b_{1}, b_{1}^{p^{n_{1}-n_{2}}} b_{2}^{1-p^{n_{1}-n_{2}-o_{1}+o_{2}}}\right) \in \mathcal{B}_{r}$ so (4.2) implies $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$. Hence condition (3) holds.

Conversely assume $b \notin \mathcal{B}_{r}^{\prime}$ and suppose that our generic element \bar{b} belongs to \mathcal{B}_{r}^{\prime}, so $o^{\prime}(b)<o^{\prime}(\bar{b})$. Thus either (4.1) or (4.2) fails. If (4.1) fails then

$$
o_{2}^{\prime}(b)>v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) \geq n_{1}-n_{2}+o_{1}^{\prime}(b)
$$

and hence b satisfies neither the consequent of (2) nor the consequent of (3). Thus we may assume that $o_{1}=0$. By Lemma 3.1, $2^{o_{2}} \mid y_{1}$, so $o_{2}^{\prime}(b)>o_{2}+n_{1}-n_{2}+o_{1}^{\prime}(b)$, and hence b does not satisfy (1a). As $p>2$ or $m \neq n_{1}$, it follows that b does not satisfy (1b) either. Thus, b does not satisfy (1). Suppose otherwise that (4.1) holds but (4.2) does not. Thus $o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b})$ and $o_{1}^{\prime}(b)>v_{2}\left(x_{2}\right)+n_{2}-n_{1}+o_{2}^{\prime}(b)$. By Lemma 3.1, $v_{2}\left(x_{2}\right) \geq n_{1}-n_{2}$ and hence $o_{1}^{\prime}(b)>v_{2}\left(x_{2}\right)+n_{2}-n_{1}+o_{2}^{\prime}(b) \geq o_{2}^{\prime}(b)$. In particular, as we are assuming that if $p=2$ then $m \neq n_{1}$, necessarily b satisfies neither the consequent of (1) nor the consequent of (3). Thus we may assume that $o_{2}=0<o_{1}$. Then $2^{\max \left(n_{1}-n_{2}, o_{1}\right)} \mid x_{2}$, by Lemma 3.1, so $o_{1}^{\prime}(b)>\max \left(0, o_{1}+n_{2}-n_{1}\right)+o_{2}^{\prime}(b)$. Hence b does not satisfy (2).

Case (ii). Suppose that $p=2$ and $0<m-n_{2}=o_{1}-o_{2}$. In particular, $o_{1} \neq 0$. By Lemma 2.4 (3), $o_{2}^{\prime}(b)=o_{2}^{\prime}(\bar{b})=2 m-n_{2}-o_{1}=m-o_{2} \geq o_{1}^{\prime}(\bar{b})$ for every $\bar{b} \in \mathcal{B}_{r}$. Therefore the first inequality in (3) holds and if $o_{2}=0$ then $o_{1}=m-n_{2} \leq n_{1}-n_{2}$ and hence $o_{1}^{\prime}(b)+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime}(b)$. Moreover, $o^{\prime}(\bar{b}) \geq o^{\prime}(b)$ if and only if $o_{1}^{\prime}(\bar{b}) \geq o_{1}^{\prime}(b)$.

Assume $n_{1}>m$, so $B_{i}=0$. In this case we must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if $o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+n_{1}-n_{2}$. Indeed, applying Remark 4.1 to (3.9), with suitable X, Y and Z, we deduce that $o_{1}^{\prime}(\bar{b}) \geq o_{1}^{\prime}(b)$ if and only if (4.1) holds. If $b \in \mathcal{B}_{r}^{\prime}$ then, taking $\bar{b}=\left(b_{1}^{1-p^{o_{1}-o_{2}}} b_{2}, b_{2}\right) \in \mathcal{B}_{r}$, we deduce that $o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+n_{1}-n_{2}$. Conversely if $b \notin \mathcal{B}_{r}^{\prime}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ then $o_{1}^{\prime}(\bar{b})>o_{1}^{\prime}(b)$ and hence

$$
o_{2}^{\prime}(b)>v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) \geq n_{1}-n_{2}+o_{1}^{\prime}(b),
$$

as desired.

If $n_{1} \leq m$ then $n_{1}=m$, by Lemma 2.4 (3). In particular $o_{2}=0$, by Corollary 2.5 (4). Moreover, applying Remark 4.1 to (3.9), $o_{1}^{\prime}(\bar{b}) \leq o_{1}^{\prime}(b)$ if and only if

$$
\text { one of the following conditions holds }\left\{\begin{array}{l}
2 \mid x_{1} y_{1} \text { and } o_{2}^{\prime}(b) \leq v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) ; \tag{4.3}\\
2 \nmid x_{1} y_{1}, 1 \leq o_{1}^{\prime}(b) \text { and } o_{2}^{\prime}(b) \leq n_{1}-n_{2}+o_{1}^{\prime}(b) ; \\
2 \nmid x_{1} y_{1}, o_{1}^{\prime}(b)=0 \text { and } 1+n_{1}-n_{2}=o_{2}^{\prime}(b) .
\end{array}\right.
$$

However, the assumption $n_{1}=m>n_{2}$ implies that $2 \nmid x_{1}$ by Lemma 3.1, and $2 \leq m-o_{1}=n_{2}-m+o_{2}^{\prime}$, by Lemma 2.4 (2) and since $p=2$. Thus the last case of (4.3) does not hold and $2 \mid x_{1} y_{1}$ if and only if $2 \mid y_{1}$.

Assume $b \in \mathcal{B}_{r}^{\prime}$. Then, taking $\bar{b}=\left(b_{1} b_{2}, b_{2}\right) \in \mathcal{B}_{r}$, condition (4.3) implies that $1 \leq o_{1}^{\prime}(b)$ and $o_{2}^{\prime}(b) \leq$ $n_{1}-n_{2}+o_{1}^{\prime}(b)$. Thus condition (2) holds. Conversely, if $b \notin \mathcal{B}_{r}^{\prime}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ then $o_{1}^{\prime}(\bar{b})>o_{1}^{\prime}(b)$ so (4.3) does not hold. If $2 \mid y_{1}$ then

$$
o_{2}^{\prime}(b)>v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) \geq 1+n_{1}-n_{2}+o_{1}^{\prime}(b),
$$

so (2) does not hold. Similarly, if $2 \nmid y_{1}$ and $1 \leq o_{1}^{\prime}(b)$ then $o_{2}^{\prime}(b)>n_{1}-n_{2}+o_{1}^{\prime}(b)$, so again (2) does not hold.

Case (iii). Finally suppose that $p=2$ and $m=n_{1}$ and either $m \leq n_{2}$ or $m-n_{2} \neq o_{1}-o_{2}$. Then for every $\bar{b} \in \mathcal{B}_{r}, A=0$ and by Lemma 2.4 (3), $o_{1} o_{2}=0$.

Assume first that $n_{2} \geq m$. Then $n_{2}=m=n_{1}$, so $o_{1}=0$ by Proposition 2.3 (4), and $B_{i}=x_{i} y_{i} 2^{m-1}$ for every $\bar{b} \in \mathcal{B}_{r}$. By Lemma 3.1, $y_{1} \equiv y_{2}-1 \equiv 0 \bmod p^{o_{2}}$, and Remark 4.1 yields $o^{\prime}(\bar{b}) \leq_{\text {lex }} o^{\prime}(b)$ if and only if one of the conditions in (4.3) holds and

$$
\begin{equation*}
\text { if } o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b}) \quad \text { then one of the following holds } \tag{4.4}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
2 \mid x_{2} y_{2} \text { and } o_{1}^{\prime}(b) \leq v_{2}\left(x_{2}\right)+o_{2}^{\prime}(b) ; \\
2 \nmid x_{2} y_{2}, 1 \leq o_{2}^{\prime}(b) \text { and } o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b) ; \\
2 \nmid x_{2} y_{2}, o_{2}^{\prime}(b)=0 \text { and } 1=o_{1}^{\prime}(b) .
\end{array}\right.
$$

We must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if condition (1) holds. Suppose $b \in \mathcal{B}_{r}^{\prime}$. If $o_{2}=0$ then we can take $\bar{b}=\left(b_{2}, b_{1}\right) \in \mathcal{B}_{r}$, so (4.3) implies $o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+o_{2}$; and if $o_{2}>0$ then, taking $\left(b_{1} b_{2}^{b^{o_{2}}}, b_{2}\right) \in \mathcal{B}_{r}$, (4.3) implies $o_{2}^{\prime}(b) \leq o_{1}^{\prime}(b)+o_{2}$. Moreover taking $\bar{b}=\left(b_{1}, b_{1} b_{2}\right) \in \mathcal{B}_{r}$ and using (4.4) we obtain that either $1 \leq o_{2}^{\prime}(b)$ and $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$ or $o_{2}^{\prime}(b)=0$ and $o_{1}^{\prime}(b)=1$. Thus condition (1) holds. Conversely, suppose $b \notin \mathcal{B}_{r}^{\prime}$ and take $\bar{b} \in \mathcal{B}_{r}^{\prime}$ such that $o^{\prime}(\bar{b})>o^{\prime}(b)$. Thus one of (4.3) or (4.4) does not hold. Suppose that (4.3) does not hold. If $2 \mid x_{1} y_{1}$ then $o_{2}^{\prime}(b)>v_{2}\left(y_{1}\right)+o_{1}^{\prime}(b) \geq o_{1}^{\prime}(b)+o_{2}+n_{1}-n_{2}$, so (1) does not hold. If $2 \nmid x_{1} y_{1}$ then either $o_{2}^{\prime}(b)>o_{1}^{\prime}(b)$, or $o_{1}^{\prime}(b)=0$ and $1+n_{1}-n_{2} \neq o_{2}^{\prime}(b)$. In any case condition (1) does not hold. Suppose that (4.4) does not hold. Therefore $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}(b)$ and the three conditions on the right part of (4.4) fail. If $2 \nmid x_{2} y_{2}$ then $o^{\prime}(b) \neq(0,1)$ and hence (1b) fails; and moreover $o_{2}^{\prime}(b)=0$ or $o_{1}^{\prime}(b)>o_{2}^{\prime}(b)$, so (1a) fails too. Suppose that $2 \mid x_{2} y_{2}$. Then $o_{1}^{\prime}(b)>v_{2}\left(x_{2}\right)+o_{2}^{\prime}(b) \geq o_{2}^{\prime}(b)$ and hence (1a) fails. If moreover $2 \mid x_{2}$ then $o_{1}^{\prime}(b)>v_{2}\left(x_{2}\right)+o_{2}^{\prime}(b)>o_{2}^{\prime}(b) \geq 0$, so (1b) fails too. So we assume that $2 \nmid x_{2}$ and hence $2 \mid y_{2}$. Then $2 \nmid y_{1}$ by Lemma 3.1. If (1b) holds then (3.9) yields the following contradiction $2^{m-1} \equiv x_{1}\left(1+y_{1}\right) 2^{m-1} \equiv 0 \bmod 2^{m}$. This completes the case $m \leq n_{2}$.

Finally suppose that $m>n_{2}$. By assumption $0<m-n_{2} \neq o_{1}-o_{2}$. In particular $o_{1} \geq o_{1}+o_{2}^{\prime}-m=$ $m-n_{2}>0$, thus $o_{2}=0$. So we must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if condition (2) holds. Moreover, by Lemma 2.4 (3), oo $o_{2}^{\prime}(\bar{b})=2 m-n_{2}-o_{1}$ for each $\bar{b} \in \mathcal{B}_{r}$. Then

$$
n_{1}-n_{2}-o_{1}=m-n_{2}-o_{1}=o_{2}^{\prime}(\bar{b})-m \leq 0
$$

and hence

$$
o_{1}^{\prime}(b)+\min \left(0, n_{1}-n_{2}-o_{1}\right)=o_{1}^{\prime}(b)+o_{2}^{\prime}(b)-m \leq o_{2}^{\prime}(b) .
$$

As in the previous case, the third condition of (4.3) does not hold. Therefore $o^{\prime}(\bar{b}) \leq \leq_{\text {lex }} o^{\prime}(b)$ if and only if $o_{1}^{\prime}(\bar{b}) \leq o_{1}^{\prime}(b)$ if and only if one of the first two conditions in (4.3) holds. Suppose $b \in \mathcal{B}_{r}^{\prime}$. Then taking $\bar{b}=\left(b_{1} b_{2}, b_{2}\right) \in \mathcal{B}_{r}^{\prime}$ from (4.3) we obtain that condition (2) holds. Conversely, if $b \notin \mathcal{B}_{r}^{\prime}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ then $o_{1}^{\prime}(\bar{b})>o_{1}^{\prime}(b)$ and consequently none of the conditions in (4.3) hold. If $2 \mid x_{1} y_{1}$ then $2 \mid y_{1}$ and $o_{2}^{\prime}(b)>1+n_{1}-n_{2}+o_{1}^{\prime}(b)$, so condition (2) fails. Otherwise either $o_{1}^{\prime}(b)=0$ or $o_{2}^{\prime}>n_{1}-n_{2}+o_{1}^{\prime}$. In all cases condition (2) fails.

Lemma 4.3. Suppose $\sigma_{1}=-1, \sigma_{2}=1$ and let $b \in \mathcal{B}_{r}$. Then $b \in \mathcal{B}_{r}^{\prime}$ if and only if the following conditions hold:
(1) If $m \leq n_{2}$ then $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$ or $o_{2}=0<n_{1}-n_{2}<o_{1}$.
(2) If $m>n_{2}$ then $o_{1}^{\prime}(b)=1$ or $o_{1}+1 \neq n_{1}$.

Proof. By Proposition 2.3, $p=2$ and $n_{1}>n_{2}$, and by Lemma 2.4 each of $o_{1}^{\prime}(b)$ and $o_{1}^{\prime}(\bar{b})$ is at most 1.
(1) Assume that $m \leq n_{2}$. By Lemma 3.6, $o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b}), o_{2}^{\prime}(b) \leq$ and $o_{2}^{\prime}(\bar{b}) \leq 1$. Moreover $o_{2}^{\prime}(b) \neq o_{2}^{\prime}(\bar{b})$ if and only if $v_{2}\left(x_{2}\right)=n_{1}-n_{2}$ and $o_{1}^{\prime}(b)=1$. This implies that if $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$ then $b \in \mathcal{B}_{r}^{\prime}$ because if $o_{1}^{\prime}(b)=1$ then $o_{2}^{\prime}(b)=1$ and otherwise $o_{2}^{\prime}(b)=o_{2}^{\prime}(\bar{b})$ for every $\bar{b} \in \mathcal{B}_{r}$. It also implies, in combination with Lemma 3.1, that if $o_{2}=0$ and $n_{1}-n_{2}<o_{1}$ then $o_{2}^{\prime}(b)=o_{2}^{\prime}(\bar{b})$, so again $b \in \mathcal{B}_{r}^{\prime}$. Suppose otherwise that $o_{2}^{\prime}(b)<o_{1}^{\prime}(b)$ and either $o_{2} \neq 0$ or $o_{1} \leq n_{1}-n_{2}$. Then $o_{1}^{\prime}(b)=1, o_{2}^{\prime}(b)=0, \bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}\right) \in \mathcal{B}_{r}$ and $o_{2}^{\prime}(\bar{b})>o_{2}^{\prime}(b)$. Thus $b \notin \mathcal{B}_{r}^{\prime}$.
(2) Assume that $m>n_{2}$. Then $o_{2}^{\prime}(b)=o_{2}^{\prime}(\bar{b})=m-n_{2}+1$ by Lemma 2.4 (4). Moreover, by Lemma 3.6, $o_{1}^{\prime}(b) \neq o_{1}^{\prime}(\bar{b})$ if and only if $2 \nmid y_{1}$ and $n_{1}=o_{1}+1$. This implies that if $o_{1}^{\prime}(b)=1$ then $b \in \mathcal{B}_{r}^{\prime}$. If $o_{1}+1 \neq n_{1}$ then $o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b})$ and as $o_{2}^{\prime}(b)=o_{2}^{\prime}(\bar{b})$, in this case $\mathcal{B}_{r}=\mathcal{B}_{r}^{\prime}$ and in particular $b \in \mathcal{B}_{r}^{\prime}$. Finally, if $o_{1}^{\prime}(b) \neq 1$ and $o_{1}+1=n_{1}$ then, taking $\bar{b}=\left(b_{1}^{1-2^{o_{1}-o_{2}}} b_{2}, b_{2}\right) \in \mathcal{B}_{r}$, we obtain that $o_{1}^{\prime}(\bar{b})>o_{1}^{\prime}(b)=0$. Therefore $b \notin \mathcal{B}_{r}^{\prime}$.
Lemma 4.4. Suppose that $\sigma_{2}=-1$ and let $b \in \mathcal{B}_{r}$. Then $b \in \mathcal{B}_{r}^{\prime}$ if and only if the following conditions hold:
(1) If $o_{1} \leq o_{2}$ and $n_{1}>n_{2}$ then $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$.
(2) If $o_{1}=o_{2}$ and $n_{1}=n_{2}$ then $o_{1}^{\prime}(b) \geq o_{2}^{\prime}(b)$.
(3) If $o_{2}=0<o_{1}=n_{1}-1$ and $n_{2}=1$ then $o_{1}^{\prime}(b)=1$ or $o_{2}^{\prime}(b)=1$.
(4) If $o_{2}=0<o_{1}$ and either $n_{1} \neq o_{1}+1$ or $n_{2} \neq 1$, then $o_{1}^{\prime}(b)+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime}(b)$.
(5) If $o_{1} o_{2} \neq 0$ and $o_{1} \neq o_{2}$ then $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$.

Proof. By Proposition 2.3 and Lemma $2.4(1), p=2, \sigma_{1}=-1$ and for $i=1,2$ each of $o_{i}^{\prime}(b)$ and $o_{i}^{\prime}(\bar{b})$ is at most 1. Moreover, (3.16) and (3.17) hold. We consider separately two cases.

Case (i). Suppose that $o_{1}+1=n_{1}, o_{2}=0<o_{1}$ and $n_{2}=1$. Then the summand B in (3.17) is $x_{2} 2^{m-n_{1}}=T 2^{m-1}$ with $T=x_{2} 2^{n_{2}-n_{1}} \in \mathbb{Z}$. Applying Remark 4.1 to the congruences (3.16) and (3.17), and recalling that $o_{i}^{\prime}(b) \leq 1$, we obtain that $o^{\prime}(\bar{b}) \leq_{\text {lex }} o^{\prime}(b)$ if and only if

$$
\begin{equation*}
o_{2}^{\prime}(b) \leq v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) ; \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { if } o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b}) \text { and } v_{2}\left(x_{2}\right)=n_{1}-n_{2} \text { then } o_{1}^{\prime}(b)=1 \text { or } o_{2}^{\prime}(b)=1 \tag{4.6}
\end{equation*}
$$

Observe that (4.5) always holds because

$$
v_{2}\left(y_{2}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b) \geq n_{1}-n_{2}=o_{1} \geq 1 \geq o_{2}^{\prime}(b)
$$

Thus $o^{\prime}(\bar{b}) \leq_{\text {lex }} o^{\prime}(b)$ if and only if (4.6) holds. Moreover, by the assumptions, none of the antecedents in (1), (2), (4) and (5) holds, while the antecedent of (3) holds. So we must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if $o_{1}^{\prime}(b)=1$ or $o_{2}^{\prime}(b)=1$. Indeed, if $b \in \mathcal{B}_{r}^{\prime}$ then taking $\bar{b}=\left(b_{1}, b_{1}^{2_{1}} b_{2}\right) \in \mathcal{B}_{r}$ we obtain that $o_{1}^{\prime}(b)=1$ or $o_{2}^{\prime}(b)=1$ by (4.6). Conversely, if $b \notin \mathcal{B}_{r}^{\prime}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ then (4.6) fails, so $o_{1}^{\prime}(b)=o_{2}^{\prime}(b)=0$ and hence condition (3) fails. This proves the lemma in Case (i).

Case (ii). Assume that at least one of the following conditions holds: $o_{1}+1 \neq n_{1}, o_{2} \neq 0, o_{1}=0$ or $n_{2} \neq 1$.

Then the summand B in (3.17) is 0 and by Remark 4.1, $o^{\prime}(\bar{b}) \leq_{\text {lex }} o^{\prime}(b)$ if and only if (4.5) holds and

$$
\begin{equation*}
\text { if } o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b}) \text { then } o_{1}^{\prime}(b) \leq v_{2}\left(x_{2}\right)+n_{2}-n_{1}+o_{2}^{\prime}(b) \tag{4.7}
\end{equation*}
$$

By hypothesis, the antecedent of (3) does not hold in this case. So we must prove that $b \in \mathcal{B}_{r}^{\prime}$ if and only if the conditions (1), (2), (4) and (5) hold.

Suppose that $b \in \mathcal{B}_{r}^{\prime}$. Assume $o_{1} \leq o_{2}$ and $n_{1}>n_{2}$. Then either $o_{1}=0$ or $0<o_{1}=o_{2}$ by Proposition 2.3 (4). In the first case take $\bar{b}=\left(b_{1}, b_{1}^{2_{1}-n_{2}} b_{2}\right) \in \mathcal{B}_{r}$, and in the second take $\bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}^{1-2^{n_{1}-n_{2}}}\right) \in$ \mathcal{B}_{r}. In both cases $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$ by (4.7). Thus condition (1) hold. If $o_{1}=o_{2}$ and $n_{1}=n_{2}$ then, taking $\bar{b}=\left(b_{2}, b_{1}\right)$, (4.5) yields $o_{1}^{\prime}(b) \geq o_{2}^{\prime}(b)$. Hence condition (2) holds. If $o_{2}=0<o_{1}$ then, taking $\bar{b}=\left(b_{1}, b_{1}^{2^{\max \left(n_{1}-n_{2}, o_{1}\right)}} b_{2}\right) \in \mathcal{B}_{r}$, (4.7) yields $o_{1}^{\prime}(b)+\min \left(0, n_{1}-n_{2}-o_{1}\right) \leq o_{2}^{\prime}(b)$. Thus condition (4) holds. If $o_{1} o_{2} \neq 0$ and $o_{1} \neq o_{2}$ then $o_{2}<o_{1}<o_{2}+n_{1}-n_{2}$, by Proposition 2.3 (4). Taking $\bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}^{1-2^{n_{1}-n_{2}+o_{2}-o_{1}}}\right) \in \mathcal{B}_{r},(4.7)$ yields $o_{1}^{\prime}(b) \leq o_{2}^{\prime}(b)$.

Conversely, suppose that b satisfies (1), (2), (4) and (5) and $b \notin \mathcal{B}_{r}^{\prime}$. Take $\bar{b} \in \mathcal{B}_{r}^{\prime}$. Then either (4.5) or (4.7) fails. If (4.5) fails then

$$
1 \geq o_{2}^{\prime}(b)>v_{2}\left(y_{1}\right)+n_{1}-n_{2}+o_{1}^{\prime}(b)
$$

so necessarily $o_{2}^{\prime}(b)=1$ and $v_{2}\left(y_{1}\right)=o_{1}^{\prime}(b)=n_{1}-n_{2}=0$. Then either $o_{1}=0$ or $o_{1}=o_{2}>0$ by Proposition 2.3 (4). If $o_{1}=0$ then $o_{2} \leq v_{2}\left(y_{1}\right)=0$ by Lemma 3.1. Hence in both cases $o_{1}=o_{2}$ and condition (2) yields the contradiction $0=o_{1}^{\prime}(b) \geq o_{2}^{\prime}(b)=1$. Suppose that (4.7) does not hold. Then $o_{1}^{\prime}(b)=o_{1}^{\prime}(\bar{b})$ and

$$
1 \geq o_{1}^{\prime}(b)>v_{2}\left(x_{2}\right)+n_{2}-n_{1}+o_{2}^{\prime}(b) \geq 0
$$

Therefore $o_{1}^{\prime}(b)=1, o_{2}^{\prime}(b)=0$ and $v_{2}\left(x_{2}\right)=n_{1}-n_{2}$. If $o_{1} \leq o_{2}$ then $n_{1}=n_{2}$ by condition (1), hence $2 \nmid x_{2} y_{1}$ and $2 \mid x_{1}, y_{2}$ by Lemma 3.1 (2), therefore Lemma 3.7 yields the contradiction $0=o_{2}^{\prime}(b)=o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}(b)=1$. Thus $o_{2}<o_{1}$. By condition (5), $o_{1} o_{2}=0$, so necessarily $o_{2}=0<o_{1}$. Then $n_{1}-n_{2}=v_{2}\left(x_{2}\right) \geq o_{1}$ by Lemma 3.1, and consequently $\min \left(0, n_{1}-n_{2}-o_{1}\right)+o_{1}^{\prime}(b)=o_{1}^{\prime}(b)>o_{2}^{\prime}(b)$ contradicting condition (4).

5. Conditions on u_{1} and u_{2} : The set $\mathcal{B}_{r t}$

In this section, the roles of \mathcal{B}_{r} and \mathcal{B}_{r}^{\prime} from Section 4 are now played respectively by \mathcal{B}_{r}^{\prime} and

$$
\mathcal{B}_{r t}=\left\{b \in \mathcal{B}_{r}^{\prime}: u(b)=\left(u_{2}, u_{1}\right)\right\} .
$$

Let $b=\left(b_{1}, b_{2}\right)$ be a fixed element of \mathcal{B}_{r}^{\prime}. The goal is to obtain necessary and sufficient conditions for $b \in \mathcal{B}_{r t}$ in terms of conditions on the entries of $u(b)=\left(u_{2}(b), u_{1}(b)\right)$. Observe that if $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}$ then $b \in \mathcal{B}_{r t}$ if and only if

$$
\left[b_{2}, b_{1}\right]^{b_{i}}=\left[b_{2}, b_{1}\right]^{r_{i}} \quad \text { and } \quad b_{i}^{p^{n_{i}}}=\left[b_{2}, b_{1}\right]^{t_{i}}, \quad \text { for } i \in\{1,2\} .
$$

We consider separately the cases $\sigma_{1}=1$ and $\sigma_{1}=-1$ and use the following notation from the Main Theorem:

$$
\begin{aligned}
& a_{1}=\min \left(o_{1}^{\prime}, o_{2}, o_{2}+n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}\right), \\
& a_{2}= \begin{cases}0, & \text { if } o_{1}=0 \\
\min \left(o_{1}, o_{2}^{\prime}, o_{2}^{\prime}-o_{1}^{\prime}+\max \left(0, o_{1}+n_{2}-n_{1}\right)\right), & \text { if } o_{2}=0<o_{1} \\
\min \left(o_{1}-o_{2}, o_{2}^{\prime}-o_{1}^{\prime}\right), & \text { otherwise }\end{cases}
\end{aligned}
$$

Lemma 5.1. Assume $\sigma_{1}=1$ and let $b \in \mathcal{B}_{r}^{\prime}$. Then $b \in \mathcal{B}_{r t}$ if and only if $u_{1}(b) \leq p^{a_{1}}$ and one of the following holds:
(1) $u_{2}(b) \leq p^{a_{2}}$;
(2) $o_{1} o_{2} \neq 0, n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}=0<a_{1}, 1+p^{a_{2}} \leq u_{2}(b) \leq 2 p^{a_{2}}$, and $u_{1}(b) \equiv 1 \bmod p$.

Proof. By Lemma $2.4(3), o_{2}+o_{1}^{\prime} \leq m \leq n_{1}$ and if $m=n_{1}$ then $o_{1} o_{2}=0$. Moreover, either $o_{1}+o_{2}^{\prime}(\bar{b}) \leq$ $m \leq n_{2}$ or $2 m-o_{1}-o_{2}^{\prime}(\bar{b})=n_{2}<m$ for every $\bar{b} \in \mathcal{B}_{r}$. We will use this without specific mention. Let $\tilde{\mathcal{B}}_{r t}$ denote the set of the elements in \mathcal{B}_{r}^{\prime} which satisfy $u_{1}(b) \leq p^{a_{1}}$ and either (1) or (2).

It suffices to prove the following:
(i) $\tilde{\mathcal{B}}_{r t} \neq \emptyset$.
(ii) If $b \in \tilde{\mathcal{B}}_{r t}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ and $u(\bar{b}) \leq_{\text {lex }} u(b)$ then $u(b)=u(\bar{b})$.

Proof of (i). Start with $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}_{r}^{\prime}$. We construct another element $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right)$ with x_{1}, x_{2}, y_{1} and y_{2} selected as in the Tables 1,2 or 3 , depending on the values of o_{1} and o_{2}. The reader may verify that the conditions of Lemma 3.1 hold, so $\bar{b} \in \mathcal{B}_{r}$. Using congruences (3.9) and (3.10) we verify that in all cases $o_{i}^{\prime}(\bar{b})=o_{i}^{\prime}$, which guarantees that $\bar{b} \in \mathcal{B}_{r}^{\prime}$, and that $u_{1}(\bar{b}) \leq p^{a_{1}}$ and $u(\bar{b})$ satisfies either (1) or (2) in each case, i.e. $\bar{b} \in \tilde{\mathcal{B}}_{r t}$.
(a) Suppose first that $o_{1}=0$. Write $u_{1}(b)=\rho+q p^{a_{1}}$ with $1 \leq \rho \leq p^{a_{1}}$. Observe that $p \nmid \rho$, since $p \nmid u_{1}(b)$ and if $a_{1}=0$ then $\rho=1$. Let ρ^{\prime} be an integer with $\rho \rho^{\prime} \equiv 1 \bmod p^{m}$. We take x_{1}, x_{2}, y_{1} and y_{2} as in Table 1 .

We verify now that $o^{\prime}(\bar{b})=o^{\prime}, u_{1}(\bar{b})=\rho$ and $u_{2}(\bar{b})=1$, which imply that $\bar{b} \in \tilde{\mathcal{B}}_{r t}$, as desired. Indeed, in all cases $p \nmid y_{2}$. Moreover (3.10) takes the form

$$
y_{2} u_{2}(b) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv y_{2} u_{2}(b) p^{m-o_{2}^{\prime}} \bmod p^{m}
$$

hence $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b})=1$. Now we use (3.9). If $o_{1}^{\prime}=a_{1}$ then

$$
u_{2}(b) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv u_{2}(b) u_{1}(b) p^{m-o_{1}^{\prime}} \bmod p^{m}
$$

$o_{1}=0$	x_{1}	y_{1}	x_{2}	y_{2}
$a_{1}=o_{1}^{\prime}$	$u_{2}(b)$	0	0	1
$a_{1}=o_{2}$	$u_{2}(b)$	0	0	$\rho^{\prime} u_{1}(b)$
$a_{1}=o_{2}+n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}<o_{2}$	$u_{2}(b)$	$-q p^{o_{2}}$	0	1

TABLE 1. Values of x_{i} and y_{i} such that $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right) \in \tilde{\mathcal{B}}_{r t}$, when $o_{1}=0$
and hence $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}$ and $u_{1}(\bar{b})=u_{1}(b) \leq p^{o_{1}^{\prime}}=p^{a_{1}}$, so $u_{1}(\bar{b})=\rho$. Suppose that $a_{1}=o_{2}$. Then

$$
u_{2}(b) \rho^{\prime} u_{1}(b) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv u_{2}(b) u_{1}(b) p^{m-o_{1}^{\prime}} \bmod p^{m}
$$

Thus $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}$ and $u_{1}(\bar{b}) \equiv \rho \bmod p^{o_{1}^{\prime}}$. Since $1 \leq \rho \leq p^{o_{1}^{\prime}}$ and $1 \leq u_{1}(\bar{b}) \leq p^{o_{1}^{\prime}}$, we deduce that $u_{1}(\bar{b})=\rho$. Finally, assume that $a_{1}=o_{2}+n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}<o_{2}$. Then $o_{2}^{\prime}>o_{1}^{\prime}+n_{1}-n_{2}$ and hence $o_{2} \neq 0$, by Lemma 4.2 (1). So $p \mid y_{1}$ and thus $B_{1} \equiv 0 \bmod p^{m}$. Hence

$$
\begin{aligned}
u_{2}(b) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} & \equiv u_{2}(b) u_{1}(b) p^{m-o_{1}^{\prime}}-q u_{2}(b) p^{m-o_{2}^{\prime}+o_{2}+n_{1}-n_{2}} \\
& \equiv u_{2}(b) p^{m-o_{1}^{\prime}}\left(u_{1}(b)-q p^{a_{1}}\right) \\
& \equiv u_{2}(b) p^{m-o_{1}^{\prime}} \rho \bmod p^{m} .
\end{aligned}
$$

Therefore $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}$ and, arguing as in the previous case, we deduce again that $u_{1}(\bar{b})=\rho$.
(b) Suppose now that $o_{2}=0<o_{1}$. In this case we write $u_{2}(b)=\rho+q p^{a_{2}}$ with $1 \leq \rho \leq p^{a_{2}}$. Again $p \nmid \rho$ and we choose an integer ρ^{\prime} with $\rho \rho^{\prime} \equiv 1 \bmod p^{m}$. Moreover let

$$
\delta= \begin{cases}1, & \text { if } p=2 \text { and } m-n_{2}=o_{1} \\ 0, & \text { otherwise }\end{cases}
$$

Then we take x_{1}, x_{2}, y_{1} and y_{2} as in Table 2. We verify now that $o^{\prime}(\bar{b})=o^{\prime}, u_{1}(\bar{b})=1$ and $u_{2}(\bar{b})=\rho$, so again $\bar{b} \in \tilde{\mathcal{B}}_{r t}$.

$o_{2}=0<o_{1}$	x_{1}	y_{1}	x_{2}	y_{2}
$a_{2}=o_{2}^{\prime}$	1	0	0	$u_{1}(b)$
$a_{2}=o_{2}^{\prime}-o_{1}^{\prime}+\max \left(0, o_{1}+n_{2}-n_{1}\right)<o_{1}$	1	0	$-q p^{\max \left(n_{1}-n_{2}, o_{1}\right)}$	$u_{1}(b)$
$a_{2}=o_{1}$	$\rho^{\prime} u_{2}(b)+\delta q 2^{m-1}$	0	0	$u_{1}(b)$

TABLE 2. Values of x_{i} and y_{i} such that $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right) \in \tilde{\mathcal{B}}_{r t}$, when $o_{2}=0<o_{1}$

By (2.6), $m-1 \geq o_{1}>0$ and therefore in all cases $x_{1} \equiv 1 \bmod p^{o_{1}}$, so the conditions in Lemma 3.1 hold. By (3.9),

$$
x_{1} u_{1}(b) u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv x_{1} u_{1}(b) p^{m-o_{1}^{\prime}} \bmod p^{m}
$$

so $o_{1}^{\prime}=o_{1}^{\prime}(\bar{b})$ and $u_{1}(\bar{b})=1$. Next we use (3.10). If $a_{2}=o_{2}^{\prime}$ then

$$
u_{1}(b) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv u_{1}(b) u_{2}(b) p^{m-o_{2}^{\prime}} \bmod p^{m}
$$

so $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b})=u_{2}(b)=\rho$. If $a_{2}=o_{2}^{\prime}-o_{1}^{\prime}+\max \left(0, o_{1}+n_{2}-n_{1}\right)<o_{1}$ then $n_{1}>m$, since otherwise $m=n_{1}>n_{2}=2 m-o_{1}-o_{2}^{\prime}$, so

$$
o_{1} \leq m-o_{1}^{\prime}=o_{2}^{\prime}-o_{1}^{\prime}+o_{1}+n_{2}-n_{1}=a_{2}<o_{1}
$$

Thus $B_{2}=0$ and hence

$$
\begin{aligned}
u_{1}(b) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} & \equiv-q p^{\max \left(0, o_{1}+n_{2}-n_{1}\right)} u_{1}(b) p^{m-o_{1}^{\prime}}+u_{1}(b) u_{2}(b) p^{m-o_{2}^{\prime}} \\
& \equiv u_{1}(b)\left(-q p^{a_{2}}+u_{2}(b)\right) p^{m-o_{2}^{\prime}} \\
& \equiv u_{1}(b) \rho p^{m-o_{2}^{\prime}} \bmod p^{m}
\end{aligned}
$$

so once more $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b})=\rho$. Now assume $a_{2}=o_{1}$. If $p=2$ and $m-n_{2}=o_{1}$ then, recalling that $1<v_{2}\left(r_{1}-1\right)=m-o_{1}=n_{2}$, we deduce that $A \equiv q 2^{m-1} \bmod 2^{m}$. Moreover, $o_{2}^{\prime}=o_{2}^{\prime}(\bar{b})=2 m-n_{2}-o_{1}=m$. Thus

$$
u_{2}(\bar{b}) \rho^{\prime} u_{2}(b) u_{1}(b) \equiv q 2^{m-1}+u_{2}(\bar{b})\left(\rho^{\prime} u_{2}(b)+q 2^{m-1}\right) u_{1}(b) \equiv u_{1}(b) u_{2}(b) \bmod 2^{m}
$$

Otherwise $\delta=A=0$ and again

$$
\rho^{\prime} u_{2}(b) u_{1}(b) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv u_{1}(b) u_{2}(b) p^{m-o_{2}^{\prime}} \bmod p^{m}
$$

In both cases $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b})=\rho$, as desired.
(c) Suppose that $o_{1} o_{2} \neq 0$ and let

$$
a_{1}^{\prime}=n_{1}-n_{2}-\max \left(o_{1}-o_{2}, o_{2}^{\prime}-o_{1}^{\prime}\right)
$$

Then $m<n_{1}$, by Lemma 2.4 (3); $n_{2}<n_{1}$, by Proposition 2.3 (4); $a_{1}=\min \left(o_{1}^{\prime}, o_{2}\right)$, by Lemma 4.2 (3); and $0 \leq \min \left(a_{1}^{\prime}, a_{2}\right)$ by the combination of Proposition 2.3 (4) and Lemma 4.2 (3). Moreover, $a_{1}^{\prime}=0$ if and only if $n_{1}-n_{2}=o_{2}^{\prime}-o_{1}^{\prime}$ and, in that case, $a_{2}=o_{1}-o_{2}>0$. Similarly, $a_{2}=0$ if and only if $o_{2}^{\prime}=o_{1}^{\prime}$ and, in that case, $a_{1}^{\prime}=n_{1}-n_{2}-o_{1}+o_{2}>0$.

Let ρ and q be integers such that

$$
1 \leq \rho \leq p^{a_{2}} \quad \text { and } \quad u_{2}(b)=\rho+q p^{a_{2}}
$$

Define

$$
\left(R_{2}, q_{2}\right)= \begin{cases}\left(\rho+p^{a_{2}}, q-1\right), & \text { if } u_{1}(b) \equiv q p^{a_{1}^{\prime}} \bmod p \text { and } 0<a_{1} \\ (\rho, q), & \text { otherwise }\end{cases}
$$

and

$$
R=u_{1}(b)-q_{2} p^{a_{1}^{\prime}}
$$

Finally, let R_{1} and q_{1} be integers such that

$$
1 \leq R_{1} \leq p^{a_{1}} \quad \text { and } \quad R=R_{1}+q_{1} p^{a_{1}}
$$

As in the previous cases $p \nmid \rho$.
Claim: $p \nmid R_{i}$ for $i=1,2$ and if $p \mid R$ then $a_{1}^{\prime}=o_{1}^{\prime}=0$.
Indeed, as $p \nmid u_{1}(b)$, if $p \mid R$ then $a_{1}^{\prime}=0$ and hence $u_{1}(b) \equiv q_{2} \bmod p$. Then $a_{1}=0$ by the definition of q_{2} and thus $o_{1}^{\prime}=0$. This proves the last statement of the claim. If $p \mid R_{1}$ then $a_{1}>0$ and hence $p \mid R$, so also $a_{1}^{\prime}=0$, and therefore $u_{1}(b) \equiv q_{2} \bmod p$, contradicting the definition of q_{2}. Finally, if $p \mid R_{2}$ then $u_{1}(b) \equiv q p^{a_{1}^{\prime}} \bmod p, a_{1}>0$ and $a_{2}=0$, so $a_{1}^{\prime}>0$ and hence $p \mid u_{1}(b)$, yielding a contradiction. This proves the claim.

Therefore there are integers $R_{1}^{\prime}, R_{2}^{\prime}$ with $R_{i} R_{i}^{\prime} \equiv 1 \bmod p^{m}$, for $i=1,2$ and if $a_{1}^{\prime} \neq 0$ or $o_{1}^{\prime} \neq 0$ then there is another integer R^{\prime} such that $R R^{\prime} \equiv 1 \bmod p^{m}$. Observe that $u_{2}(b)=R_{2}+q_{2} p^{a_{2}}$ and hence $R_{2}^{\prime} u_{2}(b) \equiv 1+R_{2}^{\prime} q_{2} p^{a_{2}} \bmod p^{m}$.

We take x_{1}, x_{2}, y_{1} and y_{2} as in Table 3 with

$$
\delta= \begin{cases}1, & \text { if } p=2 \text { and } m-n_{2}=o_{1}-o_{2} \\ 0, & \text { otherwise }\end{cases}
$$

In all cases it is straightforward that the conditions of Lemma 3.1 hold and that $p \nmid y_{2}$. We will prove that $o^{\prime}(\bar{b})=o^{\prime}$ and $u_{i}(\bar{b})=R_{i}$ for $i=1,2$. It is then straightforward to verify that $\bar{b} \in \tilde{\mathcal{B}}_{r t}$, because if $R_{2}>p^{a_{2}}$ then $u_{1}(b) \equiv q p^{a_{1}^{\prime}} \bmod p, 0<a_{1}, q_{2}=q-1$ and $1+p^{a_{2}} \leq R_{2}=\rho+p^{a_{2}} \leq 2 p^{a_{2}}$. Hence $a_{1}^{\prime}=0$, so $u_{1}(b) \equiv q \bmod p$, and therefore $R_{1}=u_{1}(b)-(q-1) \equiv 1 \bmod p$.

$o_{1} o_{2} \neq 0$	x_{1}	y_{1}	x_{2}	y_{2}
$a_{2}=o_{2}^{\prime}-o_{1}^{\prime}, a_{1}=o_{2}$	1	0	$-R_{1}^{\prime} q_{2} p^{n_{1}-n_{2}}$	$R_{1}^{\prime} u_{1}(b)$
$a_{2}=o_{2}^{\prime}-o_{1}^{\prime}, a_{1}=o_{1}^{\prime}$	1	0	$-R^{\prime} q_{2} p^{n_{1}-n_{2}}$	$R^{\prime} u_{1}(b)$
$a_{2} \neq o_{2}^{\prime}-o_{1}^{\prime}, a_{1}=o_{2}$	$R_{2}^{\prime} u_{2}(b)+\delta q_{2} 2^{o_{2}^{\prime}-1}$	$-R_{2}^{\prime} q_{2}-\delta q_{2} 2^{o_{2}^{\prime}-1-o_{1}+o_{2}}$	0	$R_{1}^{\prime} R$
$a_{2} \neq o_{2}^{\prime}-o_{1}^{\prime}, a_{1}=o_{1}^{\prime}$	$R_{2}^{\prime} u_{2}(b)+\delta q_{2} 2^{o_{2}^{\prime}-1}$	$-R_{2}^{\prime} q_{2}-\delta q_{2} 2^{o_{2}^{\prime}-1-o_{1}+o_{2}}$	0	1

TABLE 3. Values of x_{i} and y_{i} such that $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right) \in \tilde{\mathcal{B}}_{r t}$, when $o_{1} o_{2} \neq 0$

Observe that $B_{1}=B_{2}=0$ because $m<n_{1}$.
Assume that $a_{2}=o_{2}^{\prime}-o_{1}^{\prime}$. Then $a_{1}^{\prime}=n_{1}-n_{2}+o_{2}-o_{1}>0$. Hence $u_{1}(b) \not \equiv q_{2} p^{a_{1}^{\prime}} \bmod p$, so $R_{2}=\rho$ and $q_{2}=q$. Then $y_{2} \equiv R_{1}^{\prime} u_{1}(b) \bmod p^{o_{1}^{\prime}}$. By $(3.9), y_{2} u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv u_{1}(b) p^{m-o_{1}^{\prime}} \bmod p^{m}$, thus $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}$ and $R_{1}^{\prime} u_{1}(b) u_{1}(\bar{b}) \equiv u_{1}(b) \bmod p^{o_{1}^{\prime}}$. This implies that $R_{1} \equiv u_{1}(\bar{b}) \bmod p^{o_{1}^{\prime}}$. Hence, as $1 \leq R_{1} \leq p^{o_{1}^{\prime}}$ and $1 \leq u_{1}(\bar{b}) \leq p^{o_{1}^{\prime}}$, we deduce that $u_{1}(\bar{b})=R_{1}$. Moreover, by (3.10),

$$
y_{2} u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv x_{2} u_{1}(b) p^{m-o_{1}^{\prime}+n_{2}-n_{1}}+y_{2} u_{2}(b) p^{m-o_{2}^{\prime}} \bmod p^{m} .
$$

Substituting x_{2} and y_{2} by their values in Table 3, and multiplying both sides by R_{1} if $a_{1}=o_{2}$ and by R if $a_{1}=o_{1}^{\prime}$, we obtain that

$$
u_{1}(b) u_{2}(\bar{b}) 2^{m-o_{2}^{\prime}(\bar{b})} \equiv-q_{2} u_{1}(b) p^{m-o_{1}^{\prime}}+u_{2}(b) u_{1}(b) p^{m-o_{2}^{\prime}} \bmod p^{m}
$$

that is,

$$
u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv\left(-q_{2} p^{a_{2}}+u_{2}(b)\right) p^{m-o_{2}^{\prime}}=R_{2} p^{m-o_{2}^{\prime}} \bmod p^{m} .
$$

Therefore $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b})=R_{2}$.
Otherwise $0<a_{2}=o_{1}-o_{2}<o_{2}^{\prime}-o_{1}^{\prime}$ and $a_{1}^{\prime}=n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}$. In particular, $a_{2}<o_{2}^{\prime}$ and $o_{1}^{\prime}<o_{2}^{\prime}-1$. Thus $\delta 2^{m-o_{1}^{\prime}+o_{2}^{\prime}-1} \equiv 0 \bmod p^{m}$. We consider separately the two options for δ.

Suppose that $\delta=0$. Then $A=0$ and by (3.10)

$$
y_{2} R_{2}^{\prime} u_{2}(b) u_{2}(\bar{b}) p^{m-o_{2}^{\prime}(\bar{b})} \equiv y_{2} u_{2}(b) p^{m-o_{2}^{\prime}} \bmod p^{m} .
$$

Hence $o_{2}^{\prime}(\bar{b})=o_{2}^{\prime}$ and $u_{2}(\bar{b}) \equiv R_{2} \bmod p^{o_{2}^{\prime}}$. Moreover $1 \leq R_{2} \leq 2 p^{a_{2}} \leq p^{o_{2}^{\prime}}$ and $1 \leq u_{2}(\bar{b}) \leq p^{o_{2}^{\prime}}$, so $u_{2}(\bar{b})=R_{2}$. Furthermore, by (3.9),

$$
R_{2}^{\prime} u_{2}(b) y_{2} u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv R_{2}^{\prime} u_{2}(b) u_{1}(b) p^{m-o_{1}^{\prime}}-R_{2}^{\prime} q_{2} u_{2}(b) p^{m-o_{2}^{\prime}+n_{1}-n_{2}} \bmod p^{m}
$$

hence

$$
\begin{equation*}
y_{2} u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv\left(u_{1}(b)-q_{2} p^{a_{1}^{\prime}}\right) p^{m-o_{1}^{\prime}} \equiv R p^{m-o_{1}^{\prime}} \bmod p^{m} . \tag{5.1}
\end{equation*}
$$

If $a_{1}=o_{2}$ then $o_{1}^{\prime} \geq o_{2}>0$, so $p \nmid R$, by the Claim. Then (5.1) takes the form

$$
R_{1}^{\prime} R u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv R p^{m-o_{1}^{\prime}} \bmod p^{m}
$$

If $a_{1}=o_{1}^{\prime}$ then $R=R_{1}+q_{1} p^{o_{1}^{\prime}}$, so (5.1) takes the form

$$
u_{1}(\bar{b}) p^{m-o_{1}^{\prime}(\bar{b})} \equiv R_{1} p^{m-o_{1}^{\prime}} \bmod p^{m} .
$$

In either case $o_{1}(\bar{b})=o_{1}^{\prime}$ and $u_{1}(\bar{b}) \equiv R_{1} \bmod p^{o_{1}^{\prime}}$; thus, as $R_{1} \leq p^{a_{1}} \leq p^{o_{1}^{\prime}}$ and $u_{1}(\bar{b}) \leq p^{o_{1}^{\prime}}$, we conclude that $u_{1}(\bar{b})=R_{1}$.

Finally assume $\delta=1$, i.e., $p=2$ and $m-n_{2}=o_{1}-o_{2}$. Then $n_{2}=2 m-o_{1}-o_{2}^{\prime}=2 m-o_{1}-o_{2}^{\prime}(\bar{b})$, by Lemma 2.4 (3), so $o_{2}^{\prime}=o_{2}^{\prime}(\bar{b})=m-o_{2}$. Since $0<o_{1}-o_{2}<o_{2}^{\prime}-o_{1}^{\prime}, m-o_{1}^{\prime}+o_{2}^{\prime}-1>m$. Furthermore, by Proposition 2.3 (4), $m-1-o_{1}+o_{2}+n_{1}-n_{2} \geq m$. Thus congruence (3.9) implies

$$
\begin{aligned}
R_{2}^{\prime} u_{2}(b) y_{2} u_{1}(\bar{b}) 2^{m-o_{1}^{\prime}(\bar{b})} & \equiv R_{2}^{\prime} u_{2}(b) u_{1}(b) 2^{m-o_{1}^{\prime}}-R_{2}^{\prime} q_{2} u_{2}(b) 2^{m-o_{2}^{\prime}+n_{1}-n_{2}} \\
& \equiv R_{2}^{\prime} u_{2}(b) 2^{m-o_{1}^{\prime}}\left(u_{1}(b)-q_{2} 2^{a_{1}^{\prime}}\right) \\
& \equiv R_{2}^{\prime} R u_{2}(b) 2^{m-o_{1}^{\prime}} \bmod 2^{m} .
\end{aligned}
$$

Hence $y_{2} u_{1}(\bar{b}) 2^{m-o_{2}^{\prime}(\bar{b})} \equiv R 2^{m-o_{1}^{\prime}} \bmod 2^{m}$, and arguing as in the previous paragraph we obtain again that $o_{1}^{\prime}=o_{1}^{\prime}(\bar{b})$ and $u_{1}(\bar{b})=R_{1}$. On the other hand $a_{2}+n_{2}-1=m-1$ and, as $p=2$ and $m \geq 2$, by Corollary 2.5 (2), $n_{2}+o_{2}^{\prime}-2=2 m-o_{1}-2 \geq m$. Thus

$$
\begin{aligned}
A & \equiv\left(R_{2}^{\prime} u_{2}(b)+q_{2} 2^{o_{2}^{\prime}-1}-1\right) y_{2} 2^{n_{2}-1} \\
& \equiv\left(R_{2}^{\prime} q_{2} 2^{a_{2}}+q_{2} 2^{o_{2}^{\prime}-1}\right) y_{2} 2^{n_{2}-1} \\
& \equiv y_{2} R_{2}^{\prime} q_{2} 2^{a_{2}+n_{2}-1}+y_{2} q_{2} 2^{n_{2}+o_{2}^{\prime}-2} \\
& \equiv q_{2} 2^{m-1} \bmod 2^{m} .
\end{aligned}
$$

Moreover $y_{2} \delta q_{2} 2^{o_{2}^{\prime}-1} 2^{m-o_{2}^{\prime}} \equiv q_{2} 2^{m-1} \bmod 2^{m}$. Hence, by (3.10),

$$
R_{2}^{\prime} u_{2}(b) y_{2} u_{2}(\bar{b}) 2^{m-o_{2}^{\prime}} \equiv q_{2} 2^{m-1}+x_{1} y_{2} u_{2}(\bar{b}) 2^{m-o_{2}^{\prime}(b)} \equiv y_{2} u_{2}(b) 2^{m-o_{2}^{\prime}} \bmod 2^{m}
$$

So arguing as in the previous case one obtains that $u_{2}(\bar{b})=R_{2}$. This proves (i).
Proof of (ii). Take $b \in \tilde{\mathcal{B}}_{r t}$ and $\bar{b} \in \mathcal{B}_{r}^{\prime}$ such that $u(\bar{b}) \leq u(b)$. Then $o_{i}^{\prime}(b)=o_{i}^{\prime}(\bar{b})$ and $\bar{b}_{i}=b_{1}^{x_{i}} b_{2}^{y_{i}}\left[b_{2}, b_{1}\right]^{z_{i}}$ for some integers x_{i}, y_{i}, z_{i} satisfying the conditions in Lemma 3.1 and congruences (3.9) and (3.10), for $i=1,2$. We will prove that $u(\bar{b})=u(b)$ by considering three cases.
(1) Suppose first that $o_{1}=0$. Then $a_{2}=0$ and $u_{i}(b) \leq p^{a_{i}}$. Thus $1=u_{2}(b)=u_{2}(\bar{b})$ and $1 \leq$ $u_{1}(\bar{b}) \leq u_{1}(b) \leq p^{a_{1}}$. If $a_{1}=0$ then $1=u_{1}(b)=u_{1}(\bar{b})$. Assume otherwise. As $a_{1} \leq o_{2}$, Lemma 3.1 yields $y_{1} \equiv y_{2}-1 \equiv 0 \bmod p^{a_{1}}$, so $B_{1} \equiv 0 \bmod p^{a_{1}+n_{1}-1}$. In particular, $B_{1} \equiv 0 \bmod p^{m}$, and hence (3.9) implies $u_{1}(\bar{b}) x_{1} \equiv x_{1} u_{1}(b) \bmod p^{a_{1}}$, while $x_{1} \equiv x_{1} y_{2}-x_{2} y_{1} \not \equiv 0 \bmod p$, so $u_{1}(\bar{b}) \equiv u_{1}(b) \bmod p^{a_{1}}$. Therefore $u_{1}(\bar{b})=u_{1}(b)$.
(2) Assume now that $o_{2}=0<o_{1}$. Then $a_{1}=0$ and $n_{2}<n_{1}$ by Proposition 2.3 (4). Moreover, $\left(u_{2}(\bar{b}), u_{1}(\bar{b})\right) \leq_{\text {lex }}\left(u_{2}(b), u_{1}(b)\right), u_{2}(b) \leq p^{a_{2}}$ and $u_{1}(b)=1$. Hence it suffices to prove that $u_{2}(b)=u_{2}(\bar{b})$. Moreover $p^{\max \left(o_{1}, n_{1}-n_{2}\right)} \mid x_{2}$. We assert that $A \equiv B_{2} \equiv 0 \bmod p^{m}$ or $a_{2}<o_{2}^{\prime}$. Otherwise, $p=2$ and, by the definition of a_{2}, we conclude that $o_{2}^{\prime} \leq o_{1}$. If $A \not \equiv 0 \bmod 2^{m}$ then $0<o_{1}=m-n_{2}=-m+o_{1}+o_{2}^{\prime}$, by Lemma 2.4 (3), so $o_{1}<m=o_{2}^{\prime} \leq o_{1}$, a contradiction. If $B_{2} \not \equiv 0 \bmod 2^{m}$ then $m=n_{1}$ and $0<o_{1} \leq$ $v_{2}\left(x_{2}\right) \leq n_{1}-n_{2}$, by Lemma 3.1. Thus, again by Lemma 2.4 (3), $o_{1} \leq m-n_{2}=-m+o_{1}+o_{2}^{\prime}$, yielding the contradiction $m \leq o_{2}^{\prime} \leq o_{1}<m$. This proves the assertion. If $A \equiv B_{2} \equiv 0 \bmod p^{m}$ then dividing by $p^{m-o_{2}^{\prime}}$ in (3.10), with the help of Lemmas 3.1 and 4.2 , the reader may verify that $u_{2}(\bar{b}) y_{2} \equiv y_{2} u_{2}(b) \bmod p^{o_{2}^{\prime}}$ and hence also $u_{2}(\bar{b}) y_{2} \equiv y_{2} u_{2}(b) \bmod p^{a_{2}}$. Otherwise, $p=2$ and $0 \leq a_{2}<o_{2}^{\prime}$ and hence $m-o_{2}^{\prime} \leq \min \left(v_{2}(A), v_{2}\left(B_{2}\right)\right)$. Thus the same argument shows that $u_{2}(\bar{b}) y_{2} \equiv y_{2} u_{2}(b) \bmod p^{a_{2}}$. Since $y_{2} \equiv x_{1} y_{2}-x_{2} y_{1} \not \equiv 0 \bmod p$, $u_{2}(\bar{b}) \equiv u_{2}(b) \bmod p^{a_{2}}$, so $u_{2}(b)=u_{2}(\bar{b})$ as desired.
(3) Assume that $o_{1} o_{2} \neq 0$. By Lemma 3.1,

$$
x_{1}=1+x_{1}^{\prime} p^{o_{1}-o_{2}}, \quad x_{2}=x_{2}^{\prime} p^{n_{1}-n_{2}}, \quad y_{1}=-x_{1}^{\prime}-y_{1}^{\prime} p^{o_{1}}, \quad y_{2}=1-x_{2}^{\prime} p^{n_{1}-n_{2}+o_{2}-o_{1}}+y_{2}^{\prime} p^{o_{2}}
$$

for some integers $x_{1}^{\prime}, x_{2}^{\prime}, y_{1}^{\prime}$ and y_{2}^{\prime}. By Proposition 2.3 (4),

$$
0<\min \left(o_{2}, o_{1}-o_{2}, n_{1}-n_{2}+o_{2}-o_{1}\right),
$$

so clearly $p \nmid x_{1} y_{2}$ and, by Lemma 4.2 (3), $a_{1}=\min \left(o_{1}^{1}, o_{2}\right)$. Moreover, by Corollary 2.5 (4), $m<n_{1}$, so $B_{1}=B_{2}=0$. Thus (3.9) and (3.10) take the forms

$$
\begin{aligned}
& u_{1}(\bar{b})\left(x_{1}\left(1+y_{2}^{\prime} p^{o_{2}}\right)+x_{2}^{\prime} p^{n_{1}-n_{2}-o_{1}+o_{2}}\left(y_{1}^{\prime} p^{o_{1}}-1\right)\right) \equiv x_{1} u_{1}(b)-\left(x_{1}^{\prime}+y_{1}^{\prime} p^{o_{2}}\right) u_{2}(b) p^{n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}} \bmod p^{o_{1}^{\prime}} \\
& A p^{o_{2}^{\prime}-m}+u_{2}(\bar{b})\left(y_{2}+x_{1}^{\prime} p^{o_{1}-o_{2}}\left(1+y_{2}^{\prime} p^{o_{2}}\right)+x_{2}^{\prime} y_{1}^{\prime} p^{n_{1}-n_{2}+o_{2}}\right) \equiv u_{1}(b) x_{2}^{\prime} p^{o_{2}^{\prime}-o_{1}^{\prime}}+u_{2}(b) y_{2} \bmod p^{o_{2}^{\prime}} .
\end{aligned}
$$

The congruences imply respectively that

$$
\begin{aligned}
u_{1}(b) & \equiv u_{1}(\bar{b}) \bmod p^{\min \left(a_{1}, a_{1}^{\prime}\right)}, \\
A p^{o_{2}^{\prime}-m}+y_{2} u_{2}(\bar{b}) & \equiv y_{2} u_{2}(b) \bmod p^{a_{2}} .
\end{aligned}
$$

Suppose that $u_{2}(\bar{b}) \not \equiv u_{2}(b) \bmod p^{a_{2}}$. Then $p^{a_{2}} \nmid A p^{o_{2}^{\prime}-m}$ and hence $p=2$ and $m-n_{2}=o_{1}-o_{2}>0$. Thus $2 m-o_{1}-o_{2}^{\prime}=n_{2}$, by Lemma 2.4 (3), so $o_{2}+o_{2}^{\prime}=m$ and hence

$$
a_{2} \leq o_{1}-o_{2} \leq m-1-o_{2}=o_{2}^{\prime}-1 .
$$

As $2^{m-1} \mid A$, it follows that $2^{a_{2}} \mid A 2^{o_{2}^{\prime}-m}$, a contradiction. Therefore, $u_{2}(b) \equiv u_{2}(\bar{b}) \bmod p^{a_{2}}$. If $a_{1} \leq a_{1}^{\prime}$ then $n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime} \neq 0$ or $a_{1}=0$ and hence $1 \leq u_{i}(b) \leq p^{a_{i}}$. Therefore $u_{2}(\bar{b})=u_{2}(b)$ and $u_{1}(\bar{b})=u_{1}(b)$, and we are done.

So we can assume $a_{1}^{\prime}<a_{1}$. Fix integers λ_{1} and λ_{2} such that $u_{1}(b)=u_{1}(\bar{b})+\lambda_{1} p^{a_{1}^{\prime}}$ and $u_{2}(b)=$ $u_{2}(\bar{b})+\lambda_{2} p^{a_{2}}$. So the congruences above can be rewritten as
$u_{1}(\bar{b})\left(x_{2}^{\prime} p^{n_{1}-n_{2}-o_{1}+o_{2}-a_{1}^{\prime}}\left(y_{1}^{\prime} p^{o_{1}}-1\right)+x_{1} y_{2}^{\prime} p^{o_{2}-a_{1}^{\prime}}\right) \equiv x_{1} \lambda_{1}-\left(x_{1}^{\prime}+y_{1}^{\prime} p^{o_{2}}\right) u_{2}(b) p^{n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}-a_{1}^{\prime}} \bmod p^{o_{1}^{\prime}-a_{1}^{\prime}}$, and

$$
A p^{o_{2}^{\prime}-m-a_{2}}+u_{2}(\bar{b})\left(x_{1}^{\prime} p^{o_{1}-o_{2}-a_{2}}\left(1+y_{2}^{\prime} p^{o_{2}}\right)+x_{2}^{\prime} y_{1}^{\prime} p^{n_{1}-n_{2}+o_{2}-a_{2}}\right) \equiv u_{1}(b) x_{2}^{\prime} p^{p_{2}^{\prime}-o_{1}^{\prime}-a_{2}}+y_{2} \lambda_{2} \bmod p^{o_{2}^{\prime}-a_{2}} .
$$

Note that $o_{1}^{\prime}-a_{1}^{\prime}<o_{2}^{\prime}-a_{2}$, since $a_{1}^{\prime}-a_{2}=n_{1}-n_{2}+o_{2}-o_{1}+o_{1}^{\prime}-o_{2}^{\prime}>o_{1}^{\prime}-o_{2}^{\prime}$. This, together with $a_{1}^{\prime}<a_{1}=\min \left(o_{2}, o_{1}^{\prime}\right), o_{1}-a_{2} \geq o_{2}$ and $n_{1}-n_{2}-a_{2}=n_{1}-n_{2}-\min \left(o_{1}-o_{2}, o_{2}^{\prime}-o_{1}^{\prime}\right) \geq a_{1}^{\prime} \geq 0$ implies that

$$
\begin{aligned}
-u_{1}(\bar{b}) x_{2}^{\prime} p^{n_{1}-n_{2}-o_{1}+o_{2}-a_{1}^{\prime}} & \equiv\left(1+x_{1}^{\prime} p^{o_{1}-o_{2}}\right) \lambda_{1}-x_{1}^{\prime} u_{2}(b) p^{n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}-a_{1}^{\prime}} \bmod p^{a_{1}-a_{1}^{\prime}} \\
u_{2}(\bar{b}) x_{1}^{\prime} p^{o_{1}-o_{2}-a_{2}} & \equiv u_{1}(b) x_{2}^{\prime} p^{o_{2}^{\prime}-o_{1}^{\prime}-a_{2}}+\left(1-x_{2}^{\prime} p^{n_{1}-n_{2}+o_{2}-o_{1}}\right) \lambda_{2} \bmod p^{a_{1}-a_{1}^{\prime}}
\end{aligned}
$$

If $a_{2}=o_{1}-o_{2}$, then $a_{1}^{\prime}=n_{1}-n_{2}+o_{1}^{\prime}-o_{2}^{\prime}$, and

$$
\begin{aligned}
-u_{1}(\bar{b}) x_{2}^{\prime} p^{p_{2}^{\prime}-o_{1}^{\prime}-o_{1}+o_{2}} & \equiv\left(1+x_{1}^{\prime} p^{o_{1}-o_{2}}\right) \lambda_{1}-x_{1}^{\prime} u_{2}(b) \bmod p^{a_{1}-a_{1}^{\prime}} \\
u_{2}(\bar{b}) x_{1}^{\prime} & \equiv u_{1}(b) x_{2}^{\prime} p^{o_{2}^{\prime}-o_{1}^{\prime}-o_{1}+o_{2}}+\left(1-x_{2}^{\prime} p^{n_{1}-n_{2}+o_{2}-o_{1}}\right) \lambda_{2} \bmod p^{a_{1}-a_{1}^{\prime}}
\end{aligned}
$$

By subtracting the second congruence from the first and simplifying, we obtain that

$$
0 \equiv\left(\lambda_{1}-\lambda_{2}\right)\left(1+x_{1}^{\prime} p^{o_{1}-o_{2}}-x_{2}^{\prime} p^{n_{1}-n_{2}-o_{1}+o_{2}}\right) \bmod p^{a_{1}-a_{1}^{\prime}}
$$

Similarly, if $a_{2}=o_{2}^{\prime}-o_{1}^{\prime}$ then $a_{1}^{\prime}=n_{1}-n_{2}+o_{2}-o_{1}$, so

$$
\begin{aligned}
-u_{1}(\bar{b}) x_{2}^{\prime} & \equiv\left(1+x_{1}^{\prime} p^{o_{1}-o_{2}}\right) \lambda_{1}-x_{1}^{\prime} u_{2}(b) p^{o_{1}-o_{2}+o_{1}^{\prime}-o_{2}^{\prime}} \bmod p^{a_{1}-a_{1}^{\prime}} \\
u_{2}(\bar{b}) x_{1}^{\prime} p^{o_{1}-o_{2}-o_{2}^{\prime}+o_{1}^{\prime}} & \equiv u_{1}(b) x_{2}^{\prime}+\left(1-x_{2}^{\prime} p^{n_{1}-n_{2}+o_{2}-o_{1}}\right) \lambda_{2} \bmod p^{a_{1}-a_{1}^{\prime}}
\end{aligned}
$$

and consequently once again

$$
0 \equiv\left(\lambda_{1}-\lambda_{2}\right)\left(1+x_{1}^{\prime} p^{o_{1}-o_{2}}-x_{2}^{\prime} p^{n_{1}-n_{2}-o_{1}+o_{2}}\right) \bmod p^{a_{1}-a_{1}^{\prime}}
$$

In either case $\lambda_{1} \equiv \lambda_{2} \bmod p^{a_{1}-a_{1}^{\prime}}$. Fix an integer q_{1} such that $\lambda_{1}=\lambda_{2}+q_{1} p^{a_{1}-a_{1}^{\prime}}$.
Moreover $1 \leq u_{2}(\bar{b}) \leq u_{2}(b) \leq 2 p^{a_{2}}$ and, as $u_{2}(b)=u_{2}(\bar{b})+\lambda_{2} p^{a_{2}}$ it follows that $\lambda_{2} \in\{0,1\}$. We claim that $\lambda_{2}=0$. Otherwise $1+p^{a_{2}} \leq u_{2}(b) \leq 2 p^{a_{2}}, 1 \leq u_{2}(\bar{b}) \leq p^{a_{2}}, \lambda_{2}=1$ and $u_{1}(b) \equiv 1 \bmod p$. Therefore condition (2) holds, and hence $u_{1}(b)=u_{1}(\bar{b})+\lambda_{2}+q_{1} p^{a_{1}} \equiv u_{1}(\bar{b})+1 \bmod p$. Therefore $u_{1}(\bar{b}) \equiv 0 \bmod p$, contradicting $p \nmid u_{1}(\bar{b})$. Therefore $\lambda_{2}=0$, so $u_{2}(b)=u_{2}(\bar{b}), p^{a_{1}-a_{1}^{\prime}} \mid \lambda_{1}$ and $u_{1}(b) \equiv u_{1}(\bar{b}) \bmod p^{a_{1}}$, which implies that $u_{1}(b)=u_{1}(\bar{b})$ because $1 \leq u_{1}(\bar{b}) \leq u_{1}(b) \leq p^{a_{1}}$.

Lemma 5.2. Suppose that $\sigma_{1}=-1$ and let $b \in \mathcal{B}_{r}^{\prime}$. Then $b \in \mathcal{B}_{r t}$ if and only if at least one of the following conditions holds:
(1) $\sigma_{2}=-1$ or $m \leq n_{2}$.
(2) $o_{1}^{\prime}=0$ and either $o_{1}=0$ or $o_{2}+1 \neq n_{2}$.
(3) $o_{1}^{\prime}=1, o_{2}=0$ and $n_{1}-n_{2}<o_{1}$.
(4) $u_{2}(b) \leq 2^{m-n_{2}}$.

Proof. By Proposition 2.3 (1) and Lemma 2.4 (4), $o_{1}^{\prime} \leq 1$ and $u_{1}(b)=1$ for each $b \in \mathcal{B}_{r}^{\prime}$. Also by Lemma 2.4 (4), if $\sigma_{2}=-1$ or $m \leq n_{2}$ then $o_{2}^{\prime} \leq 1$ and $u_{2}(b)=1$ for each $b \in \mathcal{B}_{r}^{\prime}$. In that case $\mathcal{B}_{r}^{\prime}=\mathcal{B}_{r t}$, so we shall assume otherwise, i.e., $\sigma_{2}=1$ and $n_{2}<m$. Then, once more by Lemma 2.4 (4), $n_{2}=m-o_{2}^{\prime}+1<m$ and $u_{2}(b) \in\left\{v, v+2^{m-n_{2}}\right\}$, where v is the unique integer satisfying $1 \leq v \leq 2^{m-n_{2}}$ and $v\left(1+2^{m-o_{1}-1}\right) \equiv-1 \bmod 2^{m-n_{2}}$.

We argue as in the proofs in Section 4: we use several $\bar{b}=\left(b_{1}^{x_{1}} b_{2}^{y_{1}}\left[b_{2}, b_{1}\right]^{z_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\left[b_{2}, b_{1}\right]^{z_{2}}\right) \in \mathcal{B}_{r}^{\prime}$ to compare $u(b)$ and $u(\bar{b})$ with the help of (3.14). We use Lemmas 3.1 and 4.3 to verify that the different \bar{b} constructed belong to \mathcal{B}_{r}^{\prime}. Moreover, $b \in \mathcal{B}_{r t}$ if and only if $u_{2}(b) \leq u_{2}(\bar{b})$ for every $\bar{b} \in \mathcal{B}_{r}^{\prime}$. Observe that (4) is equivalent to $u_{2}(b)=v$ and in that case obviously $u_{2}(b) \leq u_{2}(\bar{b})$. Thus we may assume that $u_{2}(b) \neq v$ and we must prove that $u_{2}(b)=u_{2}(\bar{b})$ for every $\bar{b} \in \mathcal{B}_{\underline{r}}^{\prime}$ if and only if either (2) or (3) holds.

Suppose that $u_{2}(b)=u_{2}(\bar{b})$ for every $\bar{b} \in \mathcal{B}_{r}^{\prime}$. We consider separately the two possible values of o_{1}^{\prime}. Firstly assume that $o_{1}^{\prime}=1$. If $o_{2}=0<o_{1}, n_{1}=o_{1}+1$ and $n_{2}=1$ and we take $\bar{b}=\left(b_{1}^{1-2^{o_{1}}}, b_{1}^{2_{1}{ }_{1}} b_{2}\right) \in \mathcal{B}_{r}$ then $o_{1}^{\prime}(\bar{b})=o_{1}^{\prime}(b)$, by Lemma $3.6(2)$, so $\bar{b} \in \mathcal{B}_{r}^{\prime}$ by Lemma 4.3 (2), and (3.14) yields the contradiction $2^{m-1} \equiv 0 \bmod 2^{m}$, since $A=B=2^{m-1}$. Therefore $o_{1}+1<n_{1}, 0<o_{2}, o_{1}=0$ or $1<n_{2}$. Then $B=0$. If $o_{1}=0$ then take $\bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}\right)$; if $o_{2}=0<o_{1} \leq n_{1}-n_{2}$ then take $\bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}\right)$, and if $o_{1} o_{2} \neq 0$ then take $\bar{b}=\left(b_{1}, b_{1}^{2^{n_{1}-n_{2}}} b_{2}^{1-2^{n_{1}-n_{2}-o_{1}+o_{2}}}\right)$. In each case $\bar{b} \in \mathcal{B}_{r}^{\prime}$ by Lemma 3.6 (2) and Lemma 4.3 (2) and $A \equiv 0 \bmod 2^{m}$, so congruence (3.14) yields again the contradiction that $2^{m-1} \equiv 0 \bmod 2^{m}$. Therefore $o_{2}=0$ and $n_{1}-n_{2}<o_{1}$, so condition (3) holds. Next suppose $o_{1}^{\prime}=0$. Then $o_{1}+1 \neq n_{1}$ and $\mathcal{B}_{r}=\mathcal{B}_{r}^{\prime}$ by Lemma 4.3.

Proposition 2.3, $o_{1} \neq o_{2}$ and hence $\bar{b} \in \mathcal{B}_{r}^{\prime}$. Moreover, $A=2^{m-1}$, so (3.14) yields once more the contradiction that $2^{m-1} \equiv 0 \bmod 2^{m}$. Therefore $o_{1}=0$ or $o_{2}+1 \neq n_{2}$, so condition (2) holds.

Conversely, assume $u_{2}(b) \neq u_{2}(\bar{b})$ for some $\bar{b} \in \mathcal{B}_{r t}$. Therefore $u_{2}(b)-u_{2}(\bar{b})=2^{m-n_{2}}$ and we must prove that neither (2) nor (3) holds. Suppose that $o_{1}^{\prime}=1, o_{2}=0$ and $n_{1}-n_{2}<o_{1}$. In particular $1<n_{2}$, by Corollary 2.5 (2), and $2^{n_{1}-n_{2}+1} \mid x_{2}$, by Lemma 3.1, so $A=B=0$. Moreover, $n_{1}-n_{2}+1 \leq o_{1} \leq v_{2}\left(x_{2}\right)$, by Lemma 3.1, and therefore $x_{2} 2^{m-o_{1}^{\prime}+n_{2}-n_{1}} \equiv 0 \bmod 2^{m}$. Thus (3.14) yields the contradiction $2^{m-1} \equiv$ $0 \bmod 2^{m}$. Suppose that $o_{1}^{\prime}=0$, and either $o_{2}+1<n_{2}$ or $o_{1}=0$. This implies that $A=0$. Since $o_{1}^{\prime}=0$ and $m>n_{2}$, Lemma 4.3 yields $o_{1}+1 \neq n_{1}$. Thus $B=0$. Hence once more (3.14) implies the contradiction that $2^{m-1} \equiv 0 \bmod 2^{m}$.

6. Proof of the Main Theorem

By the arguments given in the introduction, the map associating inv (G) to the isomorphism class of a finite non-abelian 2-generator cyclic-by-abelian group G of prime-power order is well defined and injective. So to prove our main result it is enough to show that the image of this map is formed by the lists satisfying the conditions in the Main Theorem.

We first prove that if G is a finite non-abelian 2-generator cyclic-by-abelian group of prime-power order and

$$
\operatorname{inv}(G)=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)
$$

then the conditions in the Main Theorem hold. Condition (1) follows from the definition of p, m, n_{1} and n_{2}. Conditions (2), (3) and (4) follow from the definitions of σ_{i} and u_{i} and from (2.6) and Corollary 2.5. Condition (5) is a consequence of Proposition 2.3.

To prove (6) and (7) we fix $b \in \mathcal{B}_{r t}$, which exists by Proposition 2.3 (5) and the definition of $\mathcal{B}_{r t}$. Then $o_{i}^{\prime}=o_{i}^{\prime}(b), u_{i}=u_{i}(b)$. Suppose that $\sigma_{1}=1$. Then (6a) follows from Proposition 2.3 (2) and Corollary 2.5 (3), and (6b) from Lemma 2.4 (3). Furthermore, (6c), (6d) and (6e) follow from Lemma 4.2, and (6f) and (6 g) from Lemma 5.1. This proves condition (6). Suppose now that $\sigma_{1}=-1$. Then (7a) follows from the definition of σ_{1} and Corollary 2.5 (1). Suppose that $\sigma_{2}=1$. Then $n_{2}<n_{1}$, by Proposition 2.3 (2). Therefore (7(b)i) follows from Corollary 2.5 (5a) and Lemma 4.3 (1); and (7(b)ii) follows from Corollary 2.5 (5b), Lemma 4.3 (2) and Lemma 5.2. Finally, (7c) follows from Corollary 2.5 (1) and Lemma 4.4. This proves condition (7).

To complete the proof we need the following lemma, where for integers m and n with $n>0,\left\lfloor\frac{m}{n}\right\rfloor$ and $[m]_{n}$ denote, respectively, the quotient and the remainder of m divided by n.
Lemma 6.1. Let $M, N_{1}, N_{2}, r_{1}, r_{2}, t_{1}, t_{2}$ be positive integers satisfying the following conditions:

$$
\begin{align*}
r_{i}^{N_{i}} & \equiv 1 \bmod M, \tag{6.1}\\
t_{i} r_{i} & \equiv t_{i} \bmod M, \tag{6.2}\\
\mathcal{S}\left(r_{1} \mid N_{1}\right) & \equiv t_{1}\left(1-r_{2}\right) \bmod M \tag{6.3}\\
\mathcal{S}\left(r_{2} \mid N_{2}\right) & \equiv t_{2}\left(r_{1}-1\right) \bmod M \tag{6.4}
\end{align*}
$$

Consider the groups $A=\langle a\rangle$ and $B=\left\langle b_{1}\right\rangle \times\left\langle b_{2}\right\rangle$ with $|a|=M$ and $\left|b_{i}\right|=N_{i}$ for $i=1,2$. Then there is a group homomorphism $\sigma: B \rightarrow \operatorname{Aut}(A)$ given by $a^{\sigma\left(b_{i}\right)}=a^{r_{i}}$ and a 2-cocycle $\rho: B \times B \rightarrow A$ given by

$$
\rho\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right)=a^{r_{2}^{y_{2}} \mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right)+t_{1} r_{2}^{y_{1}+y_{2}}\left\lfloor\frac{x_{1}+x_{2}}{N_{1}}\right\rfloor+t_{2}\left\lfloor\frac{y_{1}+y_{2}}{N_{2}}\right\rfloor}
$$

for $b_{1}^{x_{i}} b_{2}^{y_{i}} \in B$ with $0 \leq x_{i}<N_{1}$ and $0 \leq y_{i}<N_{2}$, for $i=1,2$.
Proof. The only non-obvious statement is that ρ satisfies the cocycle condition: namely,

$$
\begin{equation*}
\rho\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}+x_{3}} b_{2}^{y_{2}+y_{3}}\right) \cdot \rho\left(b_{1}^{x_{2}} b_{2}^{y_{2}}, b_{1}^{x_{3}} b_{2}^{y_{3}}\right)=\rho\left(b_{1}^{x_{1}+x_{2}} b_{2}^{y_{1}+y_{2}}, b_{1}^{x_{3}} b_{2}^{y_{3}}\right) \cdot \rho\left(b_{1}^{x_{1}} b_{2}^{y_{1}}, b_{1}^{x_{2}} b_{2}^{y_{2}}\right)^{\sigma\left(b_{1}^{x_{3}} b_{2}^{y_{3}}\right)} \tag{6.5}
\end{equation*}
$$

for $b_{1}^{x_{i}} b_{2}^{y_{i}} \in B$ with $0 \leq x_{i}<N_{1}$ and $0 \leq y_{i}<N_{2}$ for $i=1,2,3$. To prove (6.5) we first make several observations.

Let n be a non-negative integer. A case-by-case argument shows that if $0 \leq z_{i}<n$ for $i \in\{1,2,3\}$ then

$$
\begin{equation*}
\left\lfloor\frac{\left[z_{1}+z_{2}\right]_{n}+z_{3}}{n}\right\rfloor+\left\lfloor\frac{z_{1}+z_{2}}{n}\right\rfloor=\left\lfloor\frac{z_{1}+\left[z_{2}+z_{3}\right]_{n}}{n}\right\rfloor+\left\lfloor\frac{z_{2}+z_{3}}{n}\right\rfloor \tag{6.6}
\end{equation*}
$$

We also observe that

$$
\mathcal{S}\left(r_{i} \mid n\right)=\sum_{j=0}^{\left\lfloor\frac{n}{N_{i}}\right\rfloor-1} r_{i}^{j N_{i}} \sum_{k=0}^{N_{i}-1} r_{i}^{k}+r_{i}^{N_{i}\left\lfloor\frac{n}{N_{i}}\right\rfloor} \sum_{k=0}^{[n]_{N_{i}}} r_{i}^{k}
$$

and hence from (6.1)

$$
\begin{equation*}
\mathcal{S}\left(r_{i} \mid n\right) \equiv\left\lfloor\frac{n}{N_{i}}\right\rfloor \mathcal{S}\left(r_{i} \mid N_{i}\right)+\mathcal{S}\left(r_{i} \mid[n]_{N_{i}}\right) \bmod M \tag{6.7}
\end{equation*}
$$

Arguing by induction on n, congruences (6.3) and (6.4) generalize to

$$
\begin{align*}
t_{1} & \equiv t_{1} r_{2}^{n}+\mathcal{S}\left(r_{2} \mid n\right) \mathcal{S}\left(r_{1} \mid N_{1}\right) \bmod M \tag{6.8}\\
t_{2} & \equiv t_{2} r_{1}^{n}-\mathcal{S}\left(r_{1} \mid n\right) \mathcal{S}\left(r_{2} \mid N_{2}\right) \bmod M \tag{6.9}
\end{align*}
$$

Let

$$
\begin{aligned}
R & =r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{2}\right)+r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid\left[x_{2}+x_{3}\right]_{N_{1}}\right) \\
R^{\prime} & =r_{1}^{x_{3}} r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right)+r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid\left[y_{1}+y_{2}\right]_{N_{2}}\right) \\
T_{1} & =t_{1} r_{2}^{y_{2}+y_{3}}\left(r_{2}^{y_{1}}\left\lfloor\frac{x_{1}+\left[x_{2}+x_{3}\right]_{N_{1}}}{N_{1}}\right\rfloor+\left\lfloor\frac{x_{2}+x_{3}}{N_{1}}\right\rfloor\right) \\
T_{1}^{\prime} & =t_{1} r_{2}^{y_{1}+y_{2}+y_{3}}\left(\left\lfloor\frac{\left[x_{1}+x_{2}\right]_{N_{1}}+x_{3}}{N_{1}}\right\rfloor+\left\lfloor\frac{x_{1}+x_{2}}{N_{1}}\right\rfloor\right) \\
T_{2} & =t_{2}\left(\left\lfloor\frac{y_{1}+\left[y_{2}+y_{3}\right]_{N_{2}}}{N_{2}}\right\rfloor+\left\lfloor\frac{y_{2}+y_{3}}{N_{2}}\right\rfloor\right) \\
T_{2}^{\prime} & =t_{2}\left(\left\lfloor\frac{\left[y_{1}+y_{2}\right]_{N_{2}}+y_{3}}{N_{2}}\right\rfloor+r_{1}^{x_{3}}\left\lfloor\frac{y_{1}+y_{2}}{N_{2}}\right\rfloor\right)
\end{aligned}
$$

Then (6.6), (6.8) and (6.7) imply

$$
\begin{aligned}
T_{1}^{\prime} & \equiv t_{1} r_{2}^{y_{1}+y_{2}+y_{3}}\left(\left\lfloor\frac{x_{1}+\left[x_{2}+x_{3}\right]_{N_{1}}}{N_{1}}\right\rfloor+\left\lfloor\frac{x_{2}+x_{3}}{N_{1}}\right\rfloor\right) \\
& \equiv T_{1}+t_{1} r_{2}^{y_{2}+y_{3}}\left(r_{2}^{y_{1}}-1\right)\left\lfloor\frac{x_{2}+x_{3}}{N_{1}}\right\rfloor \\
& \equiv T_{1}-r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid N_{1}\right)\left\lfloor\frac{x_{2}+x_{3}}{N_{1}}\right\rfloor \\
& \equiv T_{1}-r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid x_{2}+x_{3}\right)+r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid\left[x_{2}+x_{3}\right]_{N_{1}}\right) \bmod M
\end{aligned}
$$

Similarly, (6.6), (6.9) and (6.7) imply

$$
T_{2}^{\prime} \equiv T_{2}+r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{1}+y_{2}\right)-r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid\left[y_{1}+y_{2}\right]_{N_{2}}\right) \bmod M
$$

Therefore

$$
\begin{aligned}
T_{1}^{\prime}+T_{2}^{\prime}+R^{\prime}-R \equiv & T_{1}-r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid x_{2}+x_{3}\right)+T_{2}+r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{1}+y_{2}\right) \\
& +r_{1}^{x_{3}} r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right)-r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{2}\right) \\
\equiv & T_{1}-r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid x_{3}\right)-r_{2}^{y_{2}+y_{3}} r_{1}^{x_{3}} \mathcal{S}\left(r_{2} \mid y_{1}\right) \mathcal{S}\left(r_{1} \mid x_{2}\right) \\
& +T_{2}+r_{2}^{y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{2}\right)+r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{1} \mid x_{3}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right) \\
& +r_{1}^{x_{3}} r_{2}^{y_{2}+y_{3}} \mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{1}\right)-r_{2}^{y_{2}} \mathcal{S}\left(r_{1} \mid x_{2}\right) \mathcal{S}\left(r_{2} \mid y_{3}\right) \\
\equiv & T_{1}+T_{2} \bmod M,
\end{aligned}
$$

which implies (6.5).
We are ready to finish the proof of the Main Theorem. Let $I=\left(p, m, n_{1}, n_{2}, \sigma_{1}, \sigma_{2}, o_{1}, o_{2}, o_{1}^{\prime}, o_{2}^{\prime}, u_{1}, u_{2}\right)$ satisfy conditions (1)-(7) in the Main Theorem. We prove that $I=\operatorname{inv}(G)$ for some finite non-abelian 2 -generator cyclic-by-abelian group G of prime-power order. Let r_{1}, r_{2} be as in (1.1) and $t_{i}=u_{i} p^{m-o_{i}^{\prime}}$ for
$i=1,2$. Then, by conditions (2), (4), (6b) and (7), the congruences (6.1)-(6.4) hold for $M=p^{m}$ and $N_{i}=p^{n_{i}}$. Using the notation of Lemma 6.1, consider the group extension

$$
1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1
$$

realizing the action σ and the 2 -cocycle ρ. That is, G is generated by a, b_{1} and b_{2}, and these generators satisfy the relations $a^{b_{i}}=a^{r_{i}},\left[b_{2}, b_{1}\right]=a$ and $b_{i}^{p_{i}}=a^{t_{i}}$, because $\rho\left(b_{2}, b_{1}\right)=a, \rho\left(b_{i}, b_{i}^{k-1}\right)=1$ if $k<p^{n_{i}}$ and $\rho\left(b_{i}, b_{i}^{p_{i}-1}\right)=a^{t_{i}}$. This implies that G is the group given by the presentation in (1.4). From now on, the notation for \mathcal{B} and its variants refers to this group. Observe that $b=\left(b_{1}, b_{2}\right) \in \mathcal{B}, \sigma\left(b_{i}\right)=\sigma_{i}$ and $o\left(b_{i}\right)=o_{i}$ for $i=1,2$ by the definition of the r_{i} 's. Moreover, $o^{\prime}(b)=\left(o_{1}^{\prime}, o_{2}^{\prime}\right)$ and $u(b)=\left(u_{2}, u_{1}\right)$, by the definition of the t_{i} 's. Also, b satisfies the conditions in Lemma 2.2, as the parameters satisfy conditions (6a), (7b) and (5). Then $b \in \mathcal{B}^{\prime}$ and therefore $\sigma o(G)=\left(\sigma_{1}, \sigma_{2}, o_{1}, o_{2}\right)$. Hence $b \in \mathcal{B}_{r}$ by the definitions of r_{i} and t_{i}. Using Lemma 4.2 if $\sigma_{1}=1$, or Lemmas 4.3 and 4.4 if $\sigma_{1}=-1$, it follows that $b \in \mathcal{B}_{r}^{\prime}$, since the parameters satisfy conditions (6c), (6d) and (6e) if $\sigma_{1}=1$, and otherwise they satisfy conditions (7 b) and (7 c). Finally, Lemmas 5.1 and 5.2 yield $b \in \mathcal{B}_{r t}$, since the parameters satisfy conditions (6 f), (6 g), (7 b) and (7c). Therefore $\operatorname{inv}(G)=I$, as desired.

7. Implementation of our classification

In this section we present some GAP [GAP22] functions dealing with finite non-abelian 2-generator cyclic-by-abelian p-groups. The related code is available at [BCGLdR22].

The function $\operatorname{CbA} 2 \operatorname{GenByOrder}(\mathrm{p}, \mathrm{n})$ constructs the list of all 12-tuples $\operatorname{inv}(G)$ with G a finite non-abelian 2-generator cyclic-by-abelian group of order p^{n}. For example, there are exactly 273 and 100 isomorphism classes of such groups of order 2^{10} and 3^{10}, respectively.

```
gap> 11:=CbA2GenByOrder(2,10);;12:=CbA2GenByOrder(3,10);;
gap> Length(l1);Length(12);
273
100
```

We select the groups G and H with the following invariants:

```
gap> 11[210];12[92];
[2, 5, 3, 2, -1, 1, 0, 1, 1, 4, 1, 7 ]
[ 3, 3, 5, 2, 1, 1, 2, 1, 1, 2, 2, 1]
```

By (1.1), (1.3) and (1.4)

$$
G=\left\langle b_{1}, b_{2} \mid a=\left[b_{2}, b_{1}\right], a^{2^{5}}=1, a^{b_{1}}=a^{-1}, a^{b_{2}}=a^{1+2^{4}}, b_{1}^{2^{3}}=a^{2^{4}}, b_{2}^{2^{2}}=a^{7 \cdot 2}\right\rangle
$$

and

$$
H=\left\langle b_{1}, b_{2} \mid a=\left[b_{2}, b_{1}\right], a^{3^{3}}=1, a^{b_{1}}=a^{1+3}, a^{b_{2}}=a^{12}, b_{1}^{3^{5}}=a^{2 \cdot 3^{2}}, b_{2}^{3^{2}}=a^{2 \cdot 3}\right\rangle .
$$

$\operatorname{CbA} 2 \operatorname{GenPcp}(\mathrm{x})$ constructs a power-conjugate presentation [HEO05, Section 9.4.1] for the group G with $x=\operatorname{inv}(G)$.

```
gap> G:=CbA2GenPcp(l1[210]);DG:=DerivedSubgroup(G);;Order(DG);
<pc group of size 1024 with 10 generators>
32
gap> AbelianInvariants(G);NilpotencyClassOfGroup(G);
[4, 8 ]
6
gap> H:=CbA2GenPcp(12[92]);DH:=DerivedSubgroup(H); ;Order(DH);
<pc group of size }59049\mathrm{ with 10 generators>
27
gap> AbelianInvariants(H);NilpotencyClassOfGroup(H);
[ 9, 243 ]
4
gap> StructureDescription(G);
"C8 . ((C32 x C2) : C2) = C32 . (C8 x C4)"
```

```
gap> StructureDescription(H);
"C81 . (C27 : C27) = C27 . (C243 x C9)"
```

InvariantsAndBasis (G) takes as input a finite non-abelian 2-generator cyclic-by-abelian p-group G and outputs a pair $\left(\operatorname{inv}(G),\left[b_{1}, b_{2}\right]\right)$ where $\left[b_{1}, b_{2}\right]$ is an element of the set $\mathcal{B}_{r t}$ of G, so $G=\left\langle b_{1}, b_{2}\right\rangle$ and b_{1} and b_{2} satisfy the relations of (1.4). The function Invariants (G) only outputs $\operatorname{inv}(G)$.

```
gap> ib:=InvariantsAndBasis(G);
[ [ 2, 5, 3, 2, -1, 1, 0, 1, 1, 4, 1, 7 ], [ f1*f3*f5, f4 ] ]
gap> b1:=ib[2][1];; b2:=ib[2][2];; a := Comm(b2,b1);;
gap> Order(a);
32
gap> a^b1=a^-1 and a^b2=a^(1+2^4) and b1^(2^3)=a^(2^4) and b2^(2^2)=a^(7*2);
true
gap> Invariants(H);
[3, 3, 5, 2, 1, 1, 2, 1, 1, 2, 2, 1]
```

AreIsomorphicGroups (G, H) decides whether two finite non-abelian 2-generator cyclic-by-abelian p-groups G and H are isomorphic by comparing $\operatorname{inv}(G)$ and $\operatorname{inv}(H)$. If so then IsomorphismCbAGroups (G,H) returns an explicit isomorphism.

```
gap> G:=SmallGroup(2^8,465);
<pc group of size 256 with 8 generators>
gap> inv:=Invariants(G);
[ 2, 4, 2, 2, -1, -1, 0, 1, 0, 0, 1, 1]
gap> H:=CbA2GenPcp(inv);
<pc group of size 256 with 8 generators>
gap> AreIsomorphicGroups(G,H);
true
gap> IsomorphismCbAGroups(G,H);
[f1, f1*f2 ] -> [ f1, f3 ]
gap> K:=SmallGroup(2^8,532);
<pc group of size 256 with 8 generators>
gap> AreIsomorphicGroups(K,H);
false
gap> Invariants(K);
[ 2, 2, 5, 1, -1, 1, 0, 0, 1, 2, 1, 1]
```

DescendantsCbA2Gen (p, n) computes representatives of the isomorphism classes of finite non-abelian 2 -generator cyclic-by-abelian groups of order p^{n}, using the p-group generation algorithm [O'B90] as implemented for GAP in [GNOH22].

```
gap> x:=DescendantsCbA2Gen(2,10);;
gap> Length(x);
273
```

CheckNumber (p, n) and CheckIsoClasses (p, n) compare the outputs of CbA2GenByOrder (p, n) and DescendantsCbA2Gen (p, n), returning true if they agree. More precisely, CheckNumber (p, n) returns true if the outputs of $\operatorname{CbA} 2 G e n B y \operatorname{Order}(\mathrm{p}, \mathrm{n})$ and $\operatorname{DescendantsCbA2Gen}(\mathrm{p}, \mathrm{n})$ have the same cardinality. The output of CheckIsoClasses (p, n) is true when the list obtained by applying Invariants to the list of groups given by DescendantsCbA2Gen (p, n) coincides, possibly up to reordering, with the output of CbA2GenByOrder (n, p).

The following calculation demonstrates the correctness of the Main Theorem for a certain range of values. It is a costly calculation, which for large values requires 8 Gb of memory. We have verified that the output is true up to the following orders: $2^{12}, 3^{11}, 5^{10}, 7^{9}, 11^{8}, 13^{7}$ and 23^{8}.

```
gap> CheckIsoClasses(2,12);
true
gap> CheckIsoClasses(3,10);
true
```


Appendix A. The operators $\mathcal{S}(-\mid-)$ and $\mathcal{T}(-,-\mid-)$

Here we prove some useful properties of the operators $\mathcal{S}(-\mid-)$ and $\mathcal{T}(-,-\mid-)$ defined at the beginning of Section 2.
Lemma A.1. Let x and y be integers and let a, b, c and d be positive integers.
(1) $\mathcal{S}(x \mid a)= \begin{cases}a, & \text { if } x=1 ; \\ \frac{x^{a}-1}{x-1}, & \text { otherwise. }\end{cases}$
(2) $\mathcal{S}(x \mid 1+a)=1+x \mathcal{S}(x \mid a)$.
(3) $\mathcal{S}(x \mid a b)=\mathcal{S}(x \mid a) \mathcal{S}\left(x^{a} \mid b\right)$.
(4) $(x-1) \mathcal{T}(x, 1 \mid a)=\mathcal{S}(x \mid a)-a$.

Proof. The first three properties are obvious. The fourth holds since

$$
(x-1) \mathcal{T}(x, 1 \mid a)=(x-1) \sum_{j=1}^{a-1} \sum_{i=0}^{j-1} x^{i}=\sum_{j=1}^{a-1}\left(x^{j}-1\right)=\mathcal{S}(x \mid a)-a .
$$

Lemma A.2. Let p be a prime integer and let s and n be integers with $n>0$ and $s \equiv 1 \bmod p$.
(1) If p is odd, or $p=2$ and $s \equiv 1 \bmod 4$, then $v_{p}\left(s^{n}-1\right)=v_{p}(s-1)+v_{p}(n)$. Therefore $v_{p}(\mathcal{S}(s \mid n))=$ $v_{p}(n)$ and $o_{p^{n}}(s)=p^{\max \left(0, n-v_{p}(s-1)\right)}$.
(2) If $p=2$ and $s \equiv-1 \bmod 4$ then

$$
\begin{aligned}
v_{2}\left(s^{n}-1\right) & = \begin{cases}1, & \text { if } 2 \nmid n ; \\
v_{2}(s+1)+v_{2}(n), & \text { otherwise } ;\end{cases} \\
v_{2}(\mathcal{S}(s \mid n)) & = \begin{cases}0, & \text { if } 2 \nmid n ; \\
v_{2}(s+1)+v_{2}(n)-1, & \text { otherwise } ;\end{cases}
\end{aligned}
$$

and if $n \geq 2$ then $o_{2^{n}}(s)=2^{\max \left(1, n-v_{2}(s+1)\right)}$.
(3) If $v_{p}(s-1)=a$ and either n or $n-1$ is a multiple of p^{m-a} then

$$
\mathcal{S}(s \mid n) \equiv \begin{cases}0 \bmod 2^{m}, & \text { if } p=2, a=1<m, \text { and } n \equiv 0 \bmod 2^{m-1} \\ 1 \bmod 2^{m}, & \text { if } p=2, a=1<m, \text { and } n \equiv 1 \bmod 2^{m-1} \\ n+2^{m-1} \bmod 2^{m}, & \text { if } p=2,2 \leq a<m \text { and } n \not \equiv 0,1 \bmod 2^{m-a+1} \\ n \bmod p^{m}, & \text { otherwise. }\end{cases}
$$

Proof. (1) is clear if $s=1$ (with the convention that $\infty+n=\infty$ and $n-\infty=-\infty<0$) so suppose that $s \neq 1$. Then $\mathcal{S}(s \mid n)=\frac{s^{n}-1}{s-1}$, and hence $v_{p}(\mathcal{S}(s \mid n))=v_{p}\left(s^{n}-1\right)-v_{p}(s-1)$. Thus, to prove (1) by induction on $v_{p}(n)$, it is enough to show that if $p \nmid n$ then $v_{p}\left(s^{n}-1\right)=v_{p}(s-1)$ and $v_{p}\left(s^{p}-1\right)=v_{p}(s-1)+1$. Let $a=v_{p}(s-1)$. So $s=1+k p^{a}$ with $p \nmid k$. Then

$$
s^{n}=1+k n p^{a}+\sum_{i=2}^{n}\binom{n}{i} k^{i} p^{i a} \equiv 1+k n p^{a} \bmod p^{a+1}
$$

Thus, if $p \nmid n$ then $v_{p}\left(s^{n}-1\right)=a$. Moreover $s^{p}=1+k p^{a+1}+\sum_{i=2}^{p}\binom{p}{i} k^{i} p^{i a}$. If $2 \leq i<p$ then $\left.v_{p}\binom{p}{i} p^{i a}\right)=1+a p \geq a+2$. In particular, if $p \neq 2$ then $v_{p}\left(s^{p}-1\right)=a+1$. If $p=2$ then $s \equiv 1 \bmod 4$, by hypothesis. Therefore $a \geq 2$ and hence $2 a>a+1$ and $s^{2}=1+k 2^{a+1}+k^{2} 2^{2 a} \equiv 1+k 2^{a+1} \bmod 2^{a+2}$. So, in both cases $v_{p}\left(s^{p}-1\right)=a+1$, as desired.

The hypothesis $s \equiv 1 \bmod p$ implies that $\mathrm{o}_{p^{n}}(s)=p^{m}$ for

$$
\begin{aligned}
m & =\min \left\{i \geq 0: s^{p^{i}} \equiv 1 \bmod p^{n}\right\}=\min \left\{i \geq 0: v_{p}\left(s^{p^{i}}-1\right) \geq n\right\} \\
& =\min \left\{i \geq 0: i+v_{p}(s-1) \geq n\right\}=\max \left(0, n-v_{p}(s-1)\right)
\end{aligned}
$$

(2) The argument above shows that in general $v_{p}\left(s^{n}-1\right)=v_{p}(s-1)$ if $p \nmid n$. In particular if $2 \nmid n$ then $v_{2}\left(s^{n}-1\right)=v_{2}(s-1)=1$, and consequently $v_{2}(\mathcal{S}(s \mid n))=v_{2}\left(s^{n}-1\right)-v_{2}(s-1)=0$, because by assumption $s \equiv-1 \bmod 4$. Since $s^{2} \equiv 1 \bmod 4$, if $2 \mid n$ then (1) yields

$$
v_{2}\left(s^{n}-1\right)=v_{2}\left(\left(s^{2}\right)^{\frac{n}{2}}-1\right)=v_{2}\left(s^{2}+1\right)+v_{2}\left(\frac{n}{2}\right)=v_{2}(s+1)+v_{2}(s-1)+v_{2}(n)-1=v_{2}(s+1)+v_{2}(n) .
$$

The assertions about $v_{2}(\mathcal{S}(s \mid n))$ and $\mathrm{o}_{2^{n}}(s)$ follow as in the proof of (1).
(3) The statement is clear if $a \geq m$ so we assume that $a<m$.

Suppose first that either p is odd or $a \geq 2$. In that case, by (1), $\mathrm{o}_{p^{m}}(s)=p^{m-a}$ and thus the multiplicative group $\langle s\rangle$ generated by s in $\mathbb{Z} / p^{m} \mathbb{Z}$ is formed by the classes represented by the integers of the form $1+i p^{a}$ with $0 \leq i<p^{m-a}$. Thus

$$
\begin{aligned}
\mathcal{S}\left(s \mid p^{m-a}\right) & \equiv \sum_{i=0}^{p^{m-a}-1}\left(1+i p^{a}\right)=p^{m-a}+p^{a} \sum_{i=0}^{p^{m-a}-1} i \\
& \equiv p^{m-a}+p^{a} \frac{\left(p^{m-a}-1\right) p^{m-a}}{2} \\
& \equiv p^{m-a}+\frac{\left(p^{m-a}-1\right) p^{m}}{2} \\
& \equiv \begin{cases}p^{m-a} \bmod p^{m}, & \text { if } p \neq 2 \\
2^{m-a}+2^{m-1} \bmod 2^{m}, & \text { otherwise }\end{cases}
\end{aligned}
$$

Recall that $s^{i} \equiv s^{j} \bmod p^{m}$ if $i \equiv j \bmod p^{m-a}$. Thus $\mathcal{S}\left(s \mid b p^{m-a}\right) \equiv b \mathcal{S}\left(s \mid p^{m-a}\right) \bmod p^{m}$ for each integer b. Therefore, if p^{m-a} divides n then

$$
\mathcal{S}(s \mid n) \equiv \frac{n}{p^{m-a}} \mathcal{S}\left(s \mid p^{m-a}\right) \equiv \begin{cases}n \bmod p^{m}, & \text { if } p \neq 2 \\ n+\frac{n}{2^{m-a}} 2^{m-1} \bmod 2^{m}, & \text { if } p=2\end{cases}
$$

equivalently

$$
\mathcal{S}(s \mid n) \equiv \begin{cases}n+2^{m-1} \bmod 2^{m}, & \text { if } p=2 \text { and } n \not \equiv 0 \bmod 2^{m-a+1} \\ n \bmod p^{m}, & \text { otherwise }\end{cases}
$$

If $n \equiv 1 \bmod p^{m-a}$ then $s^{n-1} \equiv 1 \bmod p^{m}$, and the previous statement for $n-1$ yields

$$
\mathcal{S}(s \mid n)=\mathcal{S}(s \mid n-1)+s^{n-1} \equiv \begin{cases}n+2^{m-1} \bmod 2^{m}, & \text { if } p=2 \text { and } n \not \equiv 1 \bmod 2^{m-a+1} \\ n \bmod p^{m}, & \text { otherwise }\end{cases}
$$

Now consider the case $p=2$ and $a=1$. If $m \geq 2$ then $\mathcal{S}\left(s \mid 2^{m-1}\right)=(1+s) \mathcal{S}\left(s^{2} \mid 2^{m-2}\right)$. Let $b=v_{2}(s+1)$. As $a=1, b \geq 2$ and $v_{2}\left(s^{2}-1\right)=b+1 \geq 3$. Applying the results above for s^{2} and 2^{m-2} in the roles of s and n respectively, we deduce that $\mathcal{S}\left(s^{2} \mid 2^{m-2}\right) \equiv 2^{m-2} \bmod 2^{m}$. In particular, 2^{m-2} divides $\mathcal{S}\left(s^{2} \mid 2^{m-2}\right)$. As $4 \mid(s+1)$ we deduce that $\mathcal{S}\left(s \mid 2^{m-1}\right) \equiv 0 \bmod 2^{m}$. Arguing as above, we deduce that if 2^{m-1} divides n then $\mathcal{S}(s \mid n) \equiv 0 \bmod 2^{m}$. Applying this to $n-1$ we deduce that if $n \equiv 1 \bmod 2^{m-1}$ then $s^{n-1} \equiv 1 \bmod 2^{m}$ and $\mathcal{S}(s \mid n-1) \equiv 0 \bmod 2^{m}$. Hence

$$
\mathcal{S}(s \mid n)=\mathcal{S}(s \mid n-1)+s^{n-1} \equiv 1 \bmod 2^{m}
$$

In the proof of the following two lemmas we will use the following equality:

$$
\begin{align*}
\mathcal{T}\left(s, t \mid p^{n+1}\right) & =\sum_{0 \leq i<j<p^{n+1}} s^{i} t^{j}=\sum_{k=0}^{p-1} \sum_{\substack{k p^{n} \leq i<(k+1) p^{n} \\
i<j<p^{n+1}}} s^{i} t^{j} \\
& =\sum_{k=0}^{p-1}\left(\sum_{k p^{n} \leq i<j<(k+1) p^{n}} s^{i} t^{j}+\sum_{\substack{k p^{n} \leq i<(k+1) p^{n} \\
(k+1) p^{n} \leq j<p^{n+1}}} s^{i} t^{j}\right) \tag{A.1}\\
& =\sum_{k=0}^{p-1}\left(s^{k p^{n}} t^{k p^{n}} \sum_{0 \leq i<j<p^{n}} s^{i} t^{j}+s^{k p^{n}} t^{(k+1) p^{n}} \sum_{0 \leq i<p^{n}, 0 \leq j<p^{n}(p-k-1)} s^{i} t^{j}\right) \\
& =\mathcal{S}\left(s^{p^{n}} t^{p^{n}} \mid p\right) \mathcal{T}\left(s, t \mid p^{n}\right)+t^{p^{n}} \mathcal{S}\left(s \mid p^{n}\right) \sum_{k=0}^{p-1} s^{k p^{n}} t^{k p^{n}} \mathcal{S}\left(t \mid p^{n}(p-k-1)\right) .
\end{align*}
$$

Lemma A.3. Suppose that $s \equiv t \equiv 1 \bmod p$ and n is a positive integer. Then

$$
\mathcal{T}\left(s, t \mid p^{n}\right) \equiv \begin{cases}0 \bmod p^{n}, & \text { if } p \neq 2 ; \\ 2^{n-1} \bmod 2^{n}, & \text { if } p=2 .\end{cases}
$$

Proof. We argue by induction on n with the case $n=1$ being obvious. Suppose that the statement holds for n. Observe that $s^{p^{n}} \equiv t^{p^{n}} \equiv 1 \bmod p^{n+1}$. Moreover, by Lemma A. $2(3), \mathcal{S}\left(s \mid p^{n}\right) \equiv \mathcal{S}\left(t \mid i p^{n}\right) \equiv 0 \bmod p^{n}$. Hence, by (A.1), $\mathcal{T}\left(s, t \mid p^{n+1}\right) \equiv p \mathcal{T}\left(s, t \mid p^{n}\right) \bmod p^{n+1}$. By the induction hypothesis, if $p \neq 2$ then $\mathcal{T}\left(s, t \mid p^{n}\right)$ is a multiple of p^{n} and hence $\mathcal{T}\left(s, t \mid p^{n+1}\right) \equiv 0 \bmod p^{n+1}$. If $p=2$ then $\mathcal{T}\left(s, t \mid 2^{n}\right)=2^{n-1}+a 2^{n}$ for some integer a and hence $\mathcal{T}\left(s, t \mid 2^{n+1}\right) \equiv 2^{n} \bmod 2^{n+1}$.

Lemma A.4. Let m be a positive integer, and let s_{1}, s_{2} be integers such that $s_{1} \equiv-1 \bmod 4$ and $s_{2} \equiv$ $1 \bmod 2$. Denote $o_{1}=\max \left(0, m-v_{2}\left(s_{1}+1\right)\right)$ and $o_{2}=\max \left(0, m-v_{2}\left(s_{2}-1\right)\right)$. If n is a positive integer such that $\max \left(o_{1}, o_{2}\right) \leq n-1$ then $\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n}\right) \equiv 2^{n-1} \bmod 2^{m}$.
Proof. We proceed by double induction, first on m and then on n. As $s_{1} \equiv s_{2} \equiv 1 \bmod 2$,

$$
\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n}\right) \equiv \mathcal{T}\left(1,1 \mid 2^{n}\right) \equiv 2^{n-1} \bmod 2
$$

for every n. Now assume that both $m \geq 2$ and the induction hypothesis holds for $m-1$ and proceed by induction on n. If $n=1$ then $o_{1}=o_{2}=0$, so $s_{1} \equiv-1 \bmod 2^{m}$ and $s_{2} \equiv 1 \bmod 2^{m}$, and hence $\mathcal{T}\left(s_{1}, s_{2} \mid 2\right) \equiv \mathcal{T}(-1,1 \mid 2)=1 \bmod 2^{m}$. Assume that both $n \geq 2$ and the induction hypothesis holds for $n-1$. Observe that the hypothesis $\max \left(o_{1}, o_{2}\right) \leq n-1$, combined with Lemma A.2, implies that $s_{1}^{2^{n-1}} \equiv s_{2}^{2^{n-1}} \equiv 1 \bmod 2^{m}$. This and (A.1) yield

$$
\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n}\right) \equiv 2 \mathcal{T}\left(s_{1}, s_{2} \mid 2^{n-1}\right)+\mathcal{S}\left(s_{1} \mid 2^{n-1}\right) \mathcal{S}\left(s_{2} \mid 2^{n-1}\right) \bmod 2^{m} .
$$

By Lemma A.2,

$$
v_{2}\left(\mathcal{S}\left(s_{1} \mid 2^{n-1}\right) \mathcal{S}\left(s_{2} \mid 2^{n-1}\right)\right) \geq v_{2}\left(\mathcal{S}\left(s_{1} \mid 2^{n-1}\right)\right)+1=n-1+v_{2}\left(s_{1}+1\right) \geq n-1+m-o_{1},
$$

which is at least m by hypothesis. Hence $\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n}\right) \equiv 2 \mathcal{T}\left(s_{1}, s_{2} \mid 2^{n-1}\right) \bmod 2^{m}$. If $\max \left(o_{1}, o_{2}\right)<n-1$ then we can apply the induction hypothesis (on n) to deduce that $\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n-1}\right) \equiv 2^{n-2} \bmod 2^{m}$, and the result follows. Thus we can assume $\max \left(o_{1}, o_{2}\right)=n-1$. Write $\tilde{m}=m-1$,

$$
\tilde{o}_{1}=\max \left(0, \tilde{m}-v_{2}\left(s_{1}+1\right)\right)=\max \left(0, o_{1}-1\right)
$$

and

$$
\tilde{o}_{2}=\max \left(0, \tilde{m}-v_{2}\left(s_{2}-1\right)\right)=\max \left(0, o_{2}-1\right) .
$$

As $\max \left(o_{1}, o_{2}\right)=n-1 \geq 1, \max \left(\tilde{o}_{1}, \tilde{o}_{2}\right)=n-2$, so by the induction hypothesis (on $\left.m\right) \mathcal{T}\left(s_{1}, s_{2} \mid 2^{n-1}\right) \equiv$ $2^{n-2} \bmod 2^{m-1}$. Hence $\mathcal{T}\left(s_{1}, s_{2} \mid 2^{n}\right) \equiv 2 \mathcal{T}\left(s_{1}, s_{2} \mid 2^{n-1}\right) \equiv 2^{n-1} \bmod 2^{m}$.

Acknowledgments. The authors are grateful to the referee for many helpful comments which helped to improve the paper.

References

[AMM12] A. Ahmad, A. Magidin, and R. F. Morse, Two generator p-groups of nilpotency class 2 and their conjugacy classes, Publ. Math. Debrecen 81 (2012), no. 1-2, 145-166.
[BCGLdR22] O. Broche-Cristo, D. García-Lucas, and Á. del Río, CbA2Gen. A classification of 2-generated cyclic-by-abelian finite p-groups, https://github.com/angeldelriomateos/CbA2Gen, 2022.
[Bla99] S. R. Blackburn, Groups of prime power order with derived subgroup of prime order, J. Algebra 219 (1999), 625-657.
[Cay78] A. Cayley, Desiderata and suggestions. No. 1.-The theory of groups, Amer. J. Math. 1 (1878), no. 1, 50-52.
[EO99] B. Eick and E. A. O'Brien, Enumerating p-groups, J. Austral. Math. Soc. 67 (1999), 191-205.
[GAP22] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.12.2, 2022.
[GBR] À. García-Blázquez and Á. del Río, A classification of metacyclic groups by group invariants, Preprint: http://arxiv.org/abs/2301.08683.
[GLdRS22] D. García-Lucas, Á. del Río, and M. Stanojkowski, On group invariants determined by modular group algebras: even versus odd characteristic, Algebr. Represent. Theory. https://doi.org/10.1007/s10468-022-10182-x (2022).
[GLMR22] D. García-Lucas, L. Margolis, and Á. del Río, Non-isomorphic 2-groups with isomorphic modular group algebras, J. Reine Angew. Math. 154 (2022), no. 783, 269-274.
[GNOH22] G. Gamble, W. Nickel, E. O’Brien, and M. Horn, ANUPQ, ANU p-Quotient, Version 3.2.6, 2022.
[Hal40] P. Hall, The classification of prime-power groups, J. Reine Angew. Math. 182 (1940), 130-141.
[Hem00] C. E. Hempel, Metacyclic groups, Comm. Algebra 28 (2000), no. 8, 3865-3897.
[HEO05] D. F. Holt, B. Eick, and E. A. O'Brien, Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, 2005.
[Mie75] R. J. Miech, On p-groups with a cyclic commutator subgroup, J. Austral. Math. Soc. 20 (1975), no. 2, $178-198$.
[O'B90] E. A. O'Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), no. 5-6, 677-698.
[OVL05] E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p ${ }^{7}$ for odd prime p, J. Algebra 292 (2005).
[Rob82] D. J. S. Robinson, A course in the theory of groups, Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1982.
[Son13] Q. Song, Finite two-generator p-subgroups with cyclic derived group, Comm. Algebra 41 (2013), no. 4, 1499-1513.
O. Broche: Departamento de Matemática e Matemática Aplicada, Universidade Federal de Lavras, Caixa Postal 3037, 37200-000, Lavras, Brazil. osnel@ufla.br
D. García-Lucas, Á. del Río: Departamento de Matemáticas, Universidad de Murcia, 30100, Murcia, Spain. diego.garcial@um.es, adelrio@um.es

[^0]: 2020 Mathematics Subject Classification. 20D15.
 Key words and phrases. Finite p-groups.
 The first author was partially supported by Fundación Séneca of Murcia under a Jiménez de la Espada grant 20598/IV/18. The third author was partially supported by Grant 19880/GERM/15 funded by Fundación Séneca of Murcia. The second and third authors were partially supported by Grant PID2020-113206GB-I00 funded by MCIN/AEI/10.13039/501100011033.

